skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Airborne DNA reveals predictable spatial and seasonal dynamics of fungi
Abstract Fungi are among the most diverse and ecologically important kingdoms in life. However, the distributional ranges of fungi remain largely unknown as do the ecological mechanisms that shape their distributions1,2. To provide an integrated view of the spatial and seasonal dynamics of fungi, we implemented a globally distributed standardized aerial sampling of fungal spores3. The vast majority of operational taxonomic units were detected within only one climatic zone, and the spatiotemporal patterns of species richness and community composition were mostly explained by annual mean air temperature. Tropical regions hosted the highest fungal diversity except for lichenized, ericoid mycorrhizal and ectomycorrhizal fungi, which reached their peak diversity in temperate regions. The sensitivity in climatic responses was associated with phylogenetic relatedness, suggesting that large-scale distributions of some fungal groups are partially constrained by their ancestral niche. There was a strong phylogenetic signal in seasonal sensitivity, suggesting that some groups of fungi have retained their ancestral trait of sporulating for only a short period. Overall, our results show that the hyperdiverse kingdom of fungi follows globally highly predictable spatial and temporal dynamics, with seasonality in both species richness and community composition increasing with latitude. Our study reports patterns resembling those described for other major groups of organisms, thus making a major contribution to the long-standing debate on whether organisms with a microbial lifestyle follow the global biodiversity paradigms known for macroorganisms4,5 more » « less
Award ID(s):
2124922 1936752
PAR ID:
10556090
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature
Volume:
631
Issue:
8022
ISSN:
0028-0836
Page Range / eLocation ID:
835 to 842
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT AimStudies assessing large‐scale patterns of microbial diversity have predominantly focused on free‐living microorganisms, often failing to link observed patterns to established theories regarding the maintenance of global diversity patterns. We aimed to determine whether foliar fungi on two closely related grass hosts—Heteropogon contortusandThemeda triandra—display a commonly observed latitudinal gradient in species richness and determine whether host identity, energy (temperature and precipitation), climate seasonality, fire frequency and grass evolutionary history drive the observed patterns in species richness and composition. LocationPaleotropical. Time PeriodContemporary. Major Taxa StudiedFoliar fungi. MethodsFoliar fungal diversity was quantified from 201 leaf samples ofT. triandraandH. contortuscollected across the distributional range of these species. Mixed effects models were used to quantify patterns of diversity and their correlates among and within continents. Ordinations were used to assess drivers of composition. ResultsFoliar fungi displayed consistent latitudinal diversity gradients in richness. Energy was a strong driver of richness at inter‐continental and continental scales, while other factors had inconsistent impacts on richness among scales, hosts and guilds. Globally, richness was higher in regions of higher growing season temperatures and where hosts were present for longer periods. Composition was primarily structured by geographic region at the global scale, indicating that distance was a dominant driver of community composition. Within Australia, temperature and rainfall seasonality and the amount of growing season rainfall, were the dominant drivers of both richness and composition. Main ConclusionsWe find some support for the idea that foliar fungal species diversity is governed by the same factors as many macro‐organisms (energy availability and evolutionary history) at inter‐continental scales, but also that fungal diversity and composition in the highly seasonal continent of Australia were driven by factors that shape tropical grassy ecosystems, namely climate seasonality and fire. 
    more » « less
  2. The middle Miocene Climate Optimum (MMCO) was the warmest interval of the last 23 million years and is one of the best analogs for proposed future climate change scenarios. Fungi play a key role in the terrestrial carbon cycle as dominant decomposers of plant debris, and through their interactions with plants and other organisms as symbionts, parasites, and endobionts. Thus, their study in the fossil record, especially during the MMCO, is essential to better understand biodiversity changes and terrestrial carbon cycle dynamics in past analogous environments, as well as to model future ecological and climatic scenarios. The fossil record also offers a unique long-term, large-scale dataset to evaluate fungal assemblage dynamics across long temporal and spatial scales, providing a better understanding of how ecological factors influenced assemblage development through time. In this study, we assessed the fungal diversity and community composition recorded in two geological sections from the middle Miocene from the coal mines of Thailand and Slovakia. We used presence-absence data to quantify the fungal diversity of each locality. Spores and other fungal remains were identified to modern taxa whenever possible; laboratory codes and fossil names were used when this correlation was not possible. This study represents the first of its kind for Thailand, and it expands existing work from Slovakia. Our results indicate a total of 281 morphotaxa. This work will allow us to use modern ecological data to make inferences about ecosystem characteristics and community dynamics for the studied regions. It opens new horizons for the study of past fungal diversity based on modern fungal ecological analyses. It also sheds light on how global variations in fungal species richness and community composition were affected by different climatic conditions and under rapid increases of temperature in the past to make inferences for the near climatic future. 
    more » « less
  3. Abstract Efforts to catalog global biodiversity have often focused on aboveground taxonomic diversity, with limited consideration of belowground communities. However, diversity aboveground may influence the diversity of belowground communities and vice versa. In addition to taxonomic diversity, the structural diversity of plant communities may be related to the diversity of soil bacterial and fungal communities, which drive important ecosystem processes but are difficult to characterize across broad spatial scales. In forests, canopy structural diversity may influence soil microorganisms through its effects on ecosystem productivity and root architecture, and via associations between canopy structure, stand age, and species richness. Given that structural diversity is one of the few types of diversity that can be readily measured remotely (e.g., using light detection and ranging—LiDAR), establishing links between structural and microbial diversity could facilitate the detection of belowground biodiversity hotspots. We investigated the potential for using remotely sensed information about forest structural diversity as a predictor of soil microbial community richness and composition. We calculated LiDAR‐derived metrics of structural diversity as well as a suite of stand and soil properties from 38 forested plots across the central hardwoods region of Indiana, USA, to test whether forest canopy structure is linked with the community richness and diversity of four key soil microbial groups: bacteria, fungi, arbuscular mycorrhizal (AM) fungi, and ectomycorrhizal (EM) fungi. We found that the density of canopy vegetation is positively associated with the taxonomic richness (alpha diversity) of EM fungi, independent of changes in plant taxonomic richness. Further, structural diversity metrics were significantly correlated with the overall community composition of bacteria, EM, and total fungal communities. However, soil properties were the strongest predictors of variation in the taxonomic richness and community composition of microbial communities in comparison with structural diversity and tree species diversity. As remote sensing tools and algorithms are rapidly advancing, these results may have important implications for the use of remote sensing of vegetation structural diversity for management and restoration practices aimed at preserving belowground biodiversity. 
    more » « less
  4. null (Ed.)
    Plant leaves harbor complex microbial communities that influence plant health and productivity. Nevertheless, a detailed understanding of phyllosphere community assembly and drivers is needed, particularly for phyllosphere fungi. Here, we investigated seasonal dynamics of epiphytic phyllosphere fungal communities in switchgrass (Panicum virgatum L.), a focal bioenergy crop. We also leverage previously published data on switchgrass phyllosphere bacterial communities from the same experimental plants, allowing us to compare fungal and bacterial dynamics and explore interdomain network associations in the switchgrass phyllosphere. Overall, we found a strong impact of sampling date on fungal community composition, with multiple taxonomic levels exhibiting clear temporal patterns in relative abundance. In addition, leaf nitrogen concentration, leaf dry matter content, plant height, and minimum daily air temperature explained significant variation in phyllosphere fungal communities, likely due to their correlation with sampling date. Finally, among the core taxa, fungi–bacteria network associations were much more common than bacteria–bacteria associations, suggesting the importance of interdomain phylogenetic diversity in microbiome assembly. Although our findings highlight the complexity of phyllosphere microbiome assembly, the clear temporal patterns in lineage-specific fungal abundances give promise to the potential for accurately predicting shifts in fungal phyllosphere communities throughout the growing season, a key research priority for sustainable agriculture. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license . 
    more » « less
  5. Abstract Research suggests that microbiomes play a major role in structuring plant communities and influencing ecosystem processes, however, the relative roles and strength of change of microbial components have not been identified. We measured the response of fungal, arbuscular mycorrhizal fungal (AMF), bacteria, and oomycete composition 4 months after planting of field plots that varied in plant composition and diversity. Plots were planted using 18 prairie plant species from three plant families (Poaceae, Fabaceae, and Asteraceae) in monoculture, 2, 3, or 6 species richness mixtures and either species within multiple families or one family. Soil cores were collected and homogenized per plot and DNA were extracted from soil and roots of each plot. We found that all microbial groups responded to the planting design, indicating rapid microbiome response to plant composition. Fungal pathogen communities were strongly affected by plant diversity. We identified OTUs from genera of putatively pathogenic fungi that increased with plant family, indicating likely pathogen specificity. Bacteria were strongly differentiated by plant family in roots but not soil. Fungal pathogen diversity increased with planted species richness, while oomycete diversity, as well as bacterial diversity in roots, decreased. AMF differentiation in roots was detected with individual plant species, but not plant family or richness. Fungal saprotroph composition differentiated between plant family composition in plots, providing evidence for decomposer home-field advantage. The observed patterns are consistent with rapid microbiome differentiation with plant composition, which could generate rapid feedbacks on plant growth in the field, thereby potentially influencing plant community structure, and influence ecosystem processes. These findings highlight the importance of native microbial inoculation in restoration. 
    more » « less