Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract External and internal convertible (EIC) form-based motion control is one of the effective designs of simultaneous trajectory tracking and balance for underactuated balance robots. Under certain conditions, the EIC-based control design is shown to lead to uncontrolled robot motion. To overcome this issue, we present a Gaussian process (GP)-based data-driven learning control for underactuated balance robots with the EIC modeling structure. Two GP-based learning controllers are presented by using the EIC property. The partial EIC (PEIC)-based control design partitions the robotic dynamics into a fully actuated subsystem and a reduced-order underactuated subsystem. The null-space EIC (NEIC)-based control compensates for the uncontrolled motion in a subspace, while the other closed-loop dynamics are not affected. Under the PEIC- and NEIC-based, the tracking and balance tasks are guaranteed, and convergence rate and bounded errors are achieved without causing any uncontrolled motion by the original EIC-based control. We validate the results and demonstrate the GP-based learning control design using two inverted pendulum platforms.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Abstract Bikebot (i.e., bicycle-based robot) is a class of underactuated balance robotic systems that require simultaneous trajectory tracking and balance control tasks. We present a tracking and balance control design of an autonomous bikebot. The external-internal convertible structure of the bikebot dynamics is used to design a causal feedback control to achieve both the tracking and balance tasks. A balance equilibrium manifold is used to define and capture the platform balance profiles and coupled interaction with the trajectory tracking performance. To achieve fully autonomous navigation, a gyrobalancer actuation is integrated with the steering and velocity control for stationary platform balance and stationary-moving switching. Stability and convergence analyses are presented to guarantee the control performance. Extensive experiments are presented to validate and demonstrate the autonomous control design. We also compare the autonomous control performance with human riding experiments and similar action strategies are found between them.more » « less
An official website of the United States government
