Abstract Fragmentation of marine snow affects the downward flux of organic matter, and other aggregate‐associated compounds such as oil. Using phytoplankton aggregates, we demonstrate that marine snow with oil, termed marine oil snow, had a higher resistance to fragmentation compared to marine snow without oil when exposed to turbulence ex situ. At moderate shear levels, typical of the ocean mixed layer, 17% of marine snow without oil broke, whereas 63% of marine snow fragmented at intermediate shear. In contrast, only 17% and 33% of marine oil snow fragmented at the intermediate and highest shear levels, respectively. Our results suggest that oil increases the cohesion and stability of aggregates making them less susceptible to breaking. This work contributes toward explaining the exceptional oil sedimentation event following the 2010 spill in Gulf of Mexico. It also enhances our understanding of the factors that determine the probability of sinking aggregates to fragment.
more »
« less
Hidden comet tails of marine snow impede ocean-based carbon sequestration
Gravity-driven sinking of “marine snow” sequesters carbon in the ocean, constituting a key biological pump that regulates Earth’s climate. A mechanistic understanding of this phenomenon is obscured by the biological richness of these aggregates and a lack of direct observation of their sedimentation physics. Utilizing a scale-free vertical tracking microscopy in a field setting, we present microhydrodynamic measurements of freshly collected marine snow aggregates from sediment traps. Our observations reveal hitherto-unknown comet-like morphology arising from fluid-structure interactions of transparent exopolymer halos around sinking aggregates. These invisible comet tails slow down individual particles, greatly increasing their residence time. Based on these findings, we constructed a reduced-order model for the Stokesian sedimentation of these mucus-embedded two-phase particles, paving the way toward a predictive understanding of marine snow.
more »
« less
- Award ID(s):
- 2021032
- PAR ID:
- 10556244
- Publisher / Repository:
- AAAS
- Date Published:
- Journal Name:
- Science
- Volume:
- 386
- Issue:
- 6718
- ISSN:
- 0036-8075
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sinking or sedimentation of biological aggregates plays a critical role in carbon sequestration in the ocean and in vertical material fluxes in wastewater treatment plants. In both these contexts, the sinking aggregates are ‘active’, since they are biological hot-spots and are densely colonized by microorganisms including bacteria and sessile protists, some of which generate feeding currents. However, the effect of these feeding currents on the sinking rates, trajectories and mass transfer to these ‘active sinking particles’ has not previously been studied. Here, we use a novel scale-free vertical tracking microscope (a.k.a. gravity machine; Krishnamurthy et al. 2020 Nat. Methods 17 , 1040–1051 ( doi:10.1038/s41592-020-0924-7 )) to follow model sinking aggregates (agar spheres) with attached protists ( Vorticella convallaria ), sinking over long distances while simultaneously measuring local flows. We find that activity due to attached V. convallaria causes significant changes to the flow around aggregates in a dynamic manner and reshapes mass transport boundary layers. Further, we find that activity-mediated local flows along with sinking modify the encounter and plume cross-sections of the aggregate and induce sustained aggregate rotations. Overall, our work shows the important role of biological activity in shaping the near-field flows around aggregates with potentially important effects on aggregate fate and material fluxes.more » « less
-
Sinking or sedimentation of biological aggregates plays a critical role in carbon sequestration in the ocean and in vertical material fluxes in waste-water treatment plants. In both these contexts, the sinking aggregates are “active,” since they are biological hot-spots and are densely colonized by microorganisms including bacteria and sessile protists, some of which generate feeding currents. However, the effect of these feeding currents on the sinking rates, trajectories, and mass transfer to these "active sinking particles," has not previously been studied. Here we use a novel scale-free vertical-tracking microscope (a.k.a. Gravity Machine, Krishnamurthy et al. "Scale-free vertical tracking microscopy." Nature Methods (2020)) to follow model sinking aggregates (agar spheres) with attached protists (Vorticella convallaria), sinking over long distances while simultaneously measuring local flows. We find that activity due to attached \vortc causes significant changes to the flow around aggregates in a dynamic manner and reshapes mass transport boundary layers. Furthermore, we find that activity-mediated local flows along with sinking modify the encounter and plume cross-sections of the aggregate and induce sustained aggregate rotations. Overall our work shows the important role of biological activity in shaping the near-field flows around aggregates with potentially important effects on aggregate fate and material fluxes.more » « less
-
Abstract Sinking marine particles, one pathway of the biological carbon pump, transports carbon to the deep ocean from the surface, thereby modulating atmospheric carbon dioxide and supplying benthic food. Few in situ measurements exist of sinking particles in the Northern Gulf of Alaska; therefore, regional carbon flux prediction is poorly constrained. In this study, we (1) characterize the strength and efficiency of the biological carbon pump and (2) identify drivers of carbon flux in the Northern Gulf of Alaska. We deployed up to five inline drifting sediment traps in the upper 150 m to simultaneously collect bulk carbon and intact sinking particles in polyacrylamide gels and measured net primary productivity from deck‐board incubations during the summer of 2019. We found high carbon flux magnitude, low attenuation with depth, and high export efficiency. We quantitatively attributed carbon flux between 10 particle types, including various fecal pellet categories, dense detritus, and aggregates using polyacrylamide gels. The contribution of aggregates to total carbon flux (41–93%) and total carbon flux variability (95%) suggest that aggregation processes, not zooplankton repackaging, played a dominant role in carbon export. Furthermore, export efficiency correlated significantly with the proportion of chlorophyllain the large size fraction (> 20 μm), total aggregate carbon flux, and contribution of aggregates to total carbon flux. These results suggest that this stratified, small‐cell‐dominated ecosystem can have sufficient aggregation to allow for a strong and efficient biological carbon pump. This is the first integrative description of the biological carbon pump in this region.more » « less
-
Abstract Sinking marine particles drive the biological pump that naturally sequesters carbon from the atmosphere. Despite their small size, the compartmentalized nature of particles promotes intense localized metabolic activity by their bacterial colonizers. Yet the mechanisms promoting the onset of denitrification, a metabolism that arises once oxygen is limiting, remain to be established. Here we show experimentally that slow sinking aggregates composed of marine diatoms—important primary producers for global carbon export—support active denitrification even among bulk oxygenated water typically thought to exclude anaerobic metabolisms. Denitrification occurs at anoxic microsites distributed throughout a particle and within microns of a particle’s boundary, and fluorescence-reporting bacteria show nitrite can be released into the water column due to segregated dissimilatory reduction of nitrate and nitrite. Examining intact and broken diatoms as organic sources, we show slowly leaking cells promote more bacterial growth, allow particles to have lower oxygen, and generally support greater denitrification.more » « less
An official website of the United States government

