skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Flying, nectar-loaded honey bees conserve water and improve heat tolerance by reducing wingbeat frequency and metabolic heat production
Heat waves are becoming increasingly common due to climate change, making it crucial to identify and understand the capacities for insect pollinators, such as honey bees, to avoid overheating. We examined the effects of hot, dry air temperatures on the physiological and behavioral mechanisms that honey bees use to fly when carrying nectar loads, to assess how foraging is limited by overheating or desiccation. We found that flight muscle temperatures increased linearly with load mass at air temperatures of 20 or 30 °C, but, remarkably, there was no change with increasing nectar loads at an air temperature of 40 °C. Flying, nectar-loaded bees were able to avoid overheating at 40 °C by reducing their flight metabolic rates and increasing evaporative cooling. At high body temperatures, bees apparently increase flight efficiency by lowering their wingbeat frequency and increasing stroke amplitude to compensate, reducing the need for evaporative cooling. However, even with reductions in metabolic heat production, desiccation likely limits foraging at temperatures well below bees’ critical thermal maxima in hot, dry conditions.  more » « less
Award ID(s):
1856752
PAR ID:
10556299
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
4
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Brunet, Johanne (Ed.)
    Abstract Honey bees (Apis mellifera L. Hymeoptera: Apidae) use hydrogen peroxide (synthesized by excreted glucose oxidase) as an important component of social immunity. However, both tolerance of hydrogen peroxide and the production of glucose oxidase in honey is costly. Hydrogen peroxide may also be encountered by honey bees at high concentrations in nectar while foraging, however despite its presence both in their foraged and stored foods, it is unclear if and how bees monitor concentrations of, and their behavioral responses to, hydrogen peroxide. The costs of glucose oxidase production and the presence of hydrogen peroxide in both nectar and honey suggest hypotheses that honey bees preferentially forage on hydrogen peroxide supplemented feed syrups at certain concentrations, and avoid feed syrups supplemented with hydrogen peroxide at concentrations above some tolerance threshold. We test these hypotheses and find that, counter to expectation, honey bees avoid glucose solutions supplemented with field-relevant hydrogen peroxide concentrations and either avoid or don’t differentiate supplemented sucrose solutions when given choice assays. This is despite honey bees showing high tolerance for hydrogen peroxide in feed solutions, with no elevated mortality until concentrations of hydrogen peroxide exceed 1% (v/v) in solution, with survival apparent even at concentrations up to 10%. The behavioral interaction of honey bees with hydrogen peroxide during both within-colony synthesis in honey and when foraging on nectar therefore likely relies on interactions with other indicator molecules, and maybe constrained evolutionarily in its plasticity, representing a constitutive immune mechanism. 
    more » « less
  2. Abstract Extreme weather events are major causes of loss of life and damage infrastructure worldwide. High temperatures cause heat stress on humans, livestock, crops and infrastructure. Heat stress exposure is projected to increase with ongoing climate change. Extremes of temperature are common in Africa and infrastructure is often incapable of providing adequate cooling. We show how easily accessible cooling technology, such as evaporative coolers, prevent heat stress in historic timescales but are unsuitable as a solution under climate change. As temperatures increase, powered cooling, such as air conditioning, is necessary to prevent overheating. This will, in turn, increase demand on already stretched infrastructure. We use high temporal resolution climate model data to estimate the demand for cooling according to two metrics, firstly the apparent temperature and secondly the discomfort index. For each grid cell we calculate the heat stress value and the amount of cooling required to turn a heat stress event into a non heat stress event. We show the increase in demand for cooling in Africa is non uniform and that equatorial countries are exposed to higher heat stress than higher latitude countries. We further show that evaporative coolers are less effective in tropical regions than in the extra tropics. Finally, we show that neither low nor high efficiency coolers are sufficient to return Africa to current levels of heat stress under climate change. 
    more » « less
  3. The European honey bee, Apis mellifera L., is the single most valuable managed pollinator in the world. Poor colony health or unusually high colony losses of managed honey bees result from a myriad of stressors, which are more harmful in combination. Climate change is expected to accentuate the effects of these stressors, but the physiological and behavioral responses of honey bees to elevated temperatures while under simultaneous influence of one or more stressors remain largely unknown. Here we test the hypothesis that exposure to acute, sublethal doses of neonicotinoid insecticides reduce thermal tolerance in honey bees. We administered to bees oral doses of imidacloprid and acetamiprid at 1/5, 1/20, and1/100 of LD50 and measured their heat tolerance 4 h post- feeding, using both dynamic and static protocols. Contrary to our expectations, acute exposure to sublethal doses of both insecticides resulted in higher thermal tolerance and greater survival rates of bees. Bees that ingested the higher doses of insecticides displayed a critical thermal maximum from 2˚C to 5 ˚C greater than that of the control group, and 67%–87% reduction in mortality. Our study suggests a resilience of honey bees to high temperatures when other stressors are present, which is consistent with studies in other insects. We discuss the implications of these results and hypothesize that this compensatory effect is likely due to induction of heat shock proteins by the insecticides, which provides temporary protection from elevated temperatures 
    more » « less
  4. ABSTRACT Organisms may simultaneously face thermal, desiccation and nutritional stress under climate change. Understanding the effects arising from the interactions among these stressors is relevant for predicting organisms' responses to climate change and for developing effective conservation strategies. Using both dynamic and static protocols, we assessed for the first time how sublethal desiccation exposure (at 16.7%, 50.0% and 83.3% of LD50) impacts the heat tolerance of foragers from two social bee species found on the Greek island of Lesbos: the managed European honey bee, Apis mellifera, and the wild, ground-nesting sweat bee Lasioglossum malachurum. In addition, we explored how a short-term starvation period (24 h), followed by a moderate sublethal desiccation exposure (50% of LD50), influences honey bee heat tolerance. We found that neither the critical thermal maximum (CTmax) nor the time to heat stupor was significantly impacted by sublethal desiccation exposure in either species. Similarly, starvation followed by moderate sublethal desiccation did not affect the average CTmax estimate, but it did increase its variance. Our results suggest that sublethal exposure to these environmental stressors may not always lead to significant changes in bees' heat tolerance or increase vulnerability to rapid temperature changes during extreme weather events, such as heat waves. However, the increase in CTmax variance suggests greater variability in individual responses to temperature stress under climate change, which may impact colony-level performance. The ability to withstand desiccation may be impacted by unmeasured hypoxic conditions and the overall effect of these stressors on solitary species remains to be assessed. 
    more » « less
  5. Foraging bees fly with heavy loads of nectar and pollen, incurring energetic costs that are typically assumed to depend on load size. Insects can produce more force by increasing stroke amplitude and/or flapping frequency, but the kinematic response of a given species is thought to be consistent. We examined bumblebees ( Bombus impatiens ) carrying both light and heavy loads and found that stroke amplitude increased in proportion to load size, but did not predict metabolic rate. Rather, metabolic rate was strongly tied to frequency, which was determined not by load size but by the bee’s average loading state and loading history, with heavily loaded bees displaying smaller changes in frequency and smaller increases in metabolic rate to support additional loading. This implies that bees can increase force production through alternative mechanisms; yet, they often choose the energetically costly option of elevating frequency, suggesting associated performance benefits that merit further investigation. 
    more » « less