Abstract Observations of substructure in protoplanetary disks have largely been limited to the brightest and largest disks, excluding the abundant population of compact disks, which are likely sites of planet formation. Here, we reanalyze ∼0.″1, 1.33 mm Atacama Large Millimeter/submillimeter Array (ALMA) continuum observations of 12 compact protoplanetary disks in the Taurus star-forming region. By fitting visibilities directly, we identify substructures in six of the 12 compact disks. We then compare the substructures identified in the full Taurus sample of 24 disks in single-star systems and the ALMA DSHARP survey, differentiating between compact (Reff,90%< 50 au) and extended (Reff,90%≥50 au) disk sources. We find that substructures are detected at nearly all radii in both small and large disks. Tentatively, we find fewer wide gaps in intermediate-sized disks withReff,90%between 30 and 90 au. We perform a series of planet–disk interaction simulations to constrain the sensitivity of our visibility-fitting approach. Under the assumption of planet–disk interaction, we use the gap widths and common disk parameters to calculate potential planet masses within the Taurus sample. We find that the young planet occurrence rate peaks near Neptune masses, similar to the DSHARP sample. For 0.01MJ/M⊙≲Mp/M*≲0.1MJ/M⊙, the rate is 17.4% ± 8.3%; for 0.1MJ/M⊙≲Mp/M*≲1MJ/M⊙, it is 27.8% ± 8.3%. Both of them are consistent with microlensing surveys. For gas giants more massive than 5MJ, the occurrence rate is 4.2% ± 4.2%, consistent with direct imaging surveys.
more »
« less
Data from "High Resolution ALMA Observations of Richly Structured Protoplanetary Disks in sigma Orionis"
Data associated with Huang et al., "High Resolution ALMA Observations of Richly Structured Protoplanetary Disks in σ Orionis," accepted by ApJ. The raw data can be obtained from the ALMA archive under program IDs 2016.1.00447.S (PI: J. Williams) and 2022.1.00728.S (PI: J. Huang). Contents images.tar: FITS files of the ALMA continuum images of the eight disks reductionscripts.tar: CASA reduction scripts visibilities.tar: Continuum measurement sets for the eight disks (note that the weights in these measurement sets are not rescaled)
more »
« less
- Award ID(s):
- 2307916
- PAR ID:
- 10556451
- Publisher / Repository:
- Zenodo
- Date Published:
- Format(s):
- Medium: X
- Right(s):
- Creative Commons Attribution 4.0 International; Creative Commons Attribution 4.0 International
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Atacama Large Millimeter/submillimeter Array (ALMA) has detected substructures in numerous protoplanetary disks at radii from a few to over 100 au. These substructures are commonly thought to be associated with planet formation, either by serving as sites fostering planetesimal formation or by arising as a consequence of planet–disk interactions. Our current understanding of substructures, though, is primarily based on observations of nearby star-forming regions with mild UV environments, whereas stars are typically born in much harsher UV environments, which may inhibit planet formation in the outer disk through external photoevaporation. We present high-resolution (∼8 au) ALMA 1.3 mm continuum images of eight disks inσOrionis, a cluster irradiated by an O9.5 star. Gaps and rings are resolved in the images of five disks. The most striking of these is SO 1274, which features five gaps that appear to be arranged nearly in a resonant chain. In addition, we infer the presence of gap or shoulder-like structures in the other three disks through visibility modeling. These observations indicate that substructures robustly form and survive at semimajor axes of several tens of au or less in disks exposed to intermediate levels of external UV radiation as well as in compact disks. However, our observations also suggest that disks inσOrionis are mostly small, and thus millimeter continuum gaps beyond a disk radius of 50 au are rare in this region, possibly due to either external photoevaporation or age effects.more » « less
-
Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the binary Class 0 protostellar system BHR 71 IRS1 and IRS2 as part of the Early Planet Formation in Embedded Disks (eDisk) ALMA Large Program. We describe the12CO (J= 2–1),13CO (J= 2–1), C18O (J= 2–1), H2CO (J= 32,1–22,0), and SiO (J= 5–4) molecular lines along with the 1.3 mm continuum at high spatial resolution (∼0.″08 or ∼5 au). Dust continuum emission is detected toward BHR 71 IRS1 and IRS2, with a central compact component and extended continuum emission. The compact components are smooth and show no sign of substructures such as spirals, rings, or gaps. However, there is a brightness asymmetry along the minor axis of the presumed disk in IRS1, possibly indicative of an inclined geometrically and optically thick disk-like component. Using a position–velocity diagram analysis of the C18O line, clear Keplerian motions were not detected toward either source. If Keplerian rotationally supported disks are present, they are likely deeply embedded in their envelope. However, we can set upper limits of the central protostellar mass of 0.46M⊙and 0.26M⊙for BHR 71 IRS1 and BHR 71 IRS2, respectively. Outflows traced by12CO and SiO are detected in both sources. The outflows can be divided into two components, a wide-angle outflow and a jet. In IRS1, the jet exhibits a double helical structure, reflecting the removal of angular momentum from the system. In IRS2, the jet is very collimated and shows a chain of knots, suggesting episodic accretion events.more » « less
-
Abstract We present an overview of the Large Program, “Early Planet Formation in Embedded Disks (eDisk),” conducted with the Atacama Large Millimeter/submillimeter Array (ALMA). The ubiquitous detections of substructures, particularly rings and gaps, in protoplanetary disks around T Tauri stars raise the possibility that at least some planet formation may have already started during the embedded stages of star formation. In order to address exactly how and when planet formation is initiated, the program focuses on searching for substructures in disks around 12 Class 0 and 7 Class I protostars in nearby (<200 pc) star-forming regions through 1.3 mm continuum observations at a resolution of ∼7 au (0.″04). The initial results show that the continuum emission, mostly arising from dust disks around the sample protostars, has relatively few distinctive substructures, such as rings and spirals, in marked contrast to Class II disks. The dramatic difference may suggest that substructures quickly develop in disks when the systems evolve from protostars to Class II sources, or alternatively that high optical depth of the continuum emission could obscure internal structures. Kinematic information obtained through CO isotopologue lines and other lines reveals the presence of Keplerian disks around protostars, providing us with crucial physical parameters, in particular, the dynamical mass of the central protostars. We describe the background of the eDisk program, the sample selection and their ALMA observations, and the data reduction, and we also highlight representative first-look results.more » « less
-
Abstract The water snowline in circumstellar disks is a crucial component in planet formation, but direct observational constraints on its location remain sparse owing to the difficulty of observing water in both young embedded and mature protoplanetary disks. Chemical imaging provides an alternative route to locate the snowline, and HCO + isotopologues have been shown to be good tracers in protostellar envelopes and Herbig disks. Here we present ∼0.″5 resolution (∼35 au radius) Atacama Large Millimeter/submillimeter Array (ALMA) observations of HCO + J = 4 − 3 and H 13 CO + J = 3 − 2 toward the young (Class 0/I) disk L1527 IRS. Using a source-specific physical model with the midplane snowline at 3.4 au and a small chemical network, we are able to reproduce the HCO + and H 13 CO + emission, but for HCO + only when the cosmic-ray ionization rate is lowered to 10 −18 s −1 . Even though the observations are not sensitive to the expected HCO + abundance drop across the snowline, the reduction in HCO + above the snow surface and the global temperature structure allow us to constrain a snowline location between 1.8 and 4.1 au. Deep observations are required to eliminate the envelope contribution to the emission and to derive more stringent constraints on the snowline location. Locating the snowline in young disks directly with observations of H 2 O isotopologues may therefore still be an alternative option. With a direct snowline measurement, HCO + will be able to provide constraints on the ionization rate.more » « less