skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Great Balls of FIRE: III. Modelling black hole mergers from massive star clusters in simulations of galaxies
Context.Despite the nearly hundred gravitational-wave detections reported by the LIGO-Virgo-KAGRA Collaboration, the question of the cosmological origin of merging binary black holes (BBHs) remains open. The two main formation channels generally considered are from isolated field binaries or via dynamical assembly in dense star clusters. Aims.Here we focus on understanding the dynamical formation of merging BBHs within massive clusters in galaxies of different masses. Methods.To this end, we applied a new framework to consistently model the formation and evolution of massive star clusters in zoom-in cosmological simulations of galaxies. Each simulation, taken from the FIRE project, provides a realistic star formation environment, with a unique star formation history, that hosts realistic giant molecular clouds that constitute the birthplace of star clusters. Combined with the code for star cluster evolutionCMC, we are able to produce populations of dynamically formed merging BBHs across cosmic time in different environments. Results.As the most massive star clusters preferentially form in dense massive clouds of gas, we find that, despite their low metallicities favouring the creation of black holes, low-mass galaxies contain few massive clusters and therefore make a limited contribution to the global production of dynamically formed merging BBHs. Furthermore, we find that massive clusters can host hierarchical BBH mergers with clear, identifiable physical properties. Looking at the evolution of the BBH merger rate in different galaxies, we find strong correlations between BBH mergers and the most extreme episodes of star formation. Finally, we discuss the implications for future LIGO-Virgo-KAGRA gravitational wave observations.  more » « less
Award ID(s):
2310362
PAR ID:
10556484
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
686
ISSN:
0004-6361
Page Range / eLocation ID:
A106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract GW231123, the most massive binary black hole (BBH) merger detected by LIGO–Virgo–KAGRA, highlights the need to understand the origins of massive, high-spin stellar black holes (BHs). Dense star clusters provide natural environments for forming such systems, beyond the limits of standard massive star evolution to core collapse. While repeated BBH mergers can grow BHs through dynamical interactions (the so-called “hierarchical merger” channel), most star clusters with masses ≲106Mhave escape speeds too low to retain higher-generation BHs, limiting growth into or beyond the mass gap. In contrast, BH–star collisions with subsequent accretion of the collision debris can grow and retain BHs irrespective of the cluster escape speed. UsingN-body (Cluster Monte Carlo) simulations, we study BH growth and spin evolution through this process, and we find that accretion can drive BH masses up to at least ∼200M, with spins set by the details of the growth history. BHs up to about 150Mcan reach dimensionless spinsχ ≳ 0.7 via single coherent episodes, while more massive BHs form through multiple stochastic accretion events and eventually spin down toχ ≲ 0.4. These BHs later form binaries through dynamical encounters, producing BBH mergers that contribute up to ∼10% of all detectable events, comparable to predictions for the hierarchical channel. However, the two pathways predict distinct signatures: hierarchical mergers yield more unequal mass ratios, whereas accretion-grown BHs preferentially form near-equal-mass binaries. The accretion-driven channel allows dense clusters with low escape speeds, such as globular clusters, to produce highly spinning BBHs with both components in or above the mass gap, providing a natural formation pathway to GW231123-like systems. 
    more » « less
  2. Abstract Merging binary black holes (BBHs) formed dynamically in dense star clusters are expected to have uncorrelated spin–orbit orientations since they are assembled through many random interactions. However, measured effective spins in BBHs detected by LIGO/Virgo/KAGRA hint at additional physical processes that may introduce anisotropy. Here we address this question by exploring the impact of stellar collisions and accretion of collision debris on the spin–orbit alignment in merging BBHs formed in dense star clusters. Through hydrodynamic simulations, we study the regime where the disruption of a massive star by a BBH causes the stellar debris to form individual accretion disks bound to each black hole (BH). We show that these disks, which are randomly oriented relative to the binary orbital plane after the initial disruption of the star, can be reoriented by strong tidal torques in the binary near pericenter passages. Following accretion by the BHs on longer timescales, BBHs with small but preferentially positive effective spin parameters (χeff≲ 0.2) are formed. Our results indicate that BBH collisions in young massive star clusters could contribute to the observed trend toward small positiveχeff, and we suggest that the standard assumption often made that dynamically assembled BBHs should have isotropically distributed BH spins is not always justified. 
    more » « less
  3. Abstract With about one hundred mergers of binary black holes (BBHs) detected via gravitational waves by the LIGO-Virgo-KAGRA (LVK) Collaboration, our understanding of the darkest objects in the universe has taken unparalleled steps forward. While most of the events are expected to consist of black holes (BHs) directly formed from the collapse of massive stars, some may contain the remnants of previous BBH mergers. In the most massive globular clusters and in nuclear star clusters, successive mergers can produce second- (2G) or higher-generation BHs, and even form intermediate-mass BHs (IMBHs). Overall, we predict that up to ∼10%, ∼1%, or ∼0.1% of the BBH mergers have one component being a 2G, 3G, or 4G BH, respectively. Assuming that ∼500 BBH mergers will be detected in O4 by LVK, this means that ∼50, ∼5, or ∼0.5 events, respectively, will involve a 2G, 3G, or 4G BH, if most sources are produced dynamically in dense star clusters. With their distinctive signatures of higher masses and spins, such hierarchical mergers offer an unprecedented opportunity to learn about the BH populations in the densest stellar systems and to shed light on the elusive IMBHs that may form therein. 
    more » « less
  4. Abstract In their most recent observing run, the LIGO-Virgo-KAGRA Collaboration observed gravitational waves from compact binary mergers with highly asymmetric mass ratios, including both binary black holes (BBHs) and neutron star-black holes (NSBHs). It appears that NSBHs with mass ratiosq≃ 0.2 are more common than equally asymmetric BBHs, but the reason for this remains unclear. We use the binary population synthesis codecosmicto investigate the evolutionary pathways leading to the formation and merger of asymmetric compact binaries. We find that within the context of isolated binary stellar evolution, most asymmetric mergers start off as asymmetric stellar binaries. Because of the initial asymmetry, these systems tend to first undergo a dynamically unstable mass transfer phase. However, after the first star collapses into a compact object, the mass ratio is close to unity and the second phase of mass transfer is usually stable. According to our simulations, this stable mass transfer fails to shrink the orbit enough on its own for the system to merge. Instead, the natal kick received by the second-born compact object during its collapse is key in determining how many of these systems can merge. For the most asymmetric systems with mass ratios ofq≤ 0.1, the merging systems in our models receive an average kick magnitude of 255 km s−1during the second collapse, while the average kick for non-merging systems is 59 km s−1. Because lower mass compact objects, like neutron stars, are expected to receive larger natal kicks than higher mass BHs, this may explain why asymmetric NSBH systems merge more frequently than asymmetric BBH systems. 
    more » « less
  5. ABSTRACT Merging black holes (BHs) are expected to produce remnants with large dimensionless spin parameters (aspin ∼ 0.7). However, gravitational wave (GW) observations with LIGO–Virgo–Kagra (LVK) suggest that merging BHs are consistent with modestly positive but not high spin (aspin ∼ 0.2), causing tension with models suggesting that high-mass mergers are produced by hierarchical merger channels. Some BHs also show evidence for strong in-plane spin components. Here, we point out that spin-down of BHs due to eccentric prograde post-merger orbits within the gas of an active galactic nucleus (AGN) disc can yield BHs with masses in the upper mass gap, but only modestly positive aspin, and thus observations of BHs with low spin do not rule out hierarchical models. We also point out that the fraction of binary black hole (BBH) mergers with significant in-plane spin components is a strong test of interactions between disc BBHs and nuclear spheroid orbiters. Spin magnitude and spin tilt constraints from LVK observations of BBHs are an excellent test of dynamics of BHs in AGN discs, disc properties, and the nuclear clusters interacting with AGNs. 
    more » « less