Abstract With about one hundred mergers of binary black holes (BBHs) detected via gravitational waves by the LIGO-Virgo-KAGRA (LVK) Collaboration, our understanding of the darkest objects in the universe has taken unparalleled steps forward. While most of the events are expected to consist of black holes (BHs) directly formed from the collapse of massive stars, some may contain the remnants of previous BBH mergers. In the most massive globular clusters and in nuclear star clusters, successive mergers can produce second- (2G) or higher-generation BHs, and even form intermediate-mass BHs (IMBHs). Overall, we predict that up to ∼10%, ∼1%, or ∼0.1% of the BBH mergers have one component being a 2G, 3G, or 4G BH, respectively. Assuming that ∼500 BBH mergers will be detected in O4 by LVK, this means that ∼50, ∼5, or ∼0.5 events, respectively, will involve a 2G, 3G, or 4G BH, if most sources are produced dynamically in dense star clusters. With their distinctive signatures of higher masses and spins, such hierarchical mergers offer an unprecedented opportunity to learn about the BH populations in the densest stellar systems and to shed light on the elusive IMBHs that may form therein.
more »
« less
This content will become publicly available on June 1, 2025
Great Balls of FIRE: III. Modelling black hole mergers from massive star clusters in simulations of galaxies
Context.Despite the nearly hundred gravitational-wave detections reported by the LIGO-Virgo-KAGRA Collaboration, the question of the cosmological origin of merging binary black holes (BBHs) remains open. The two main formation channels generally considered are from isolated field binaries or via dynamical assembly in dense star clusters. Aims.Here we focus on understanding the dynamical formation of merging BBHs within massive clusters in galaxies of different masses. Methods.To this end, we applied a new framework to consistently model the formation and evolution of massive star clusters in zoom-in cosmological simulations of galaxies. Each simulation, taken from the FIRE project, provides a realistic star formation environment, with a unique star formation history, that hosts realistic giant molecular clouds that constitute the birthplace of star clusters. Combined with the code for star cluster evolutionCMC, we are able to produce populations of dynamically formed merging BBHs across cosmic time in different environments. Results.As the most massive star clusters preferentially form in dense massive clouds of gas, we find that, despite their low metallicities favouring the creation of black holes, low-mass galaxies contain few massive clusters and therefore make a limited contribution to the global production of dynamically formed merging BBHs. Furthermore, we find that massive clusters can host hierarchical BBH mergers with clear, identifiable physical properties. Looking at the evolution of the BBH merger rate in different galaxies, we find strong correlations between BBH mergers and the most extreme episodes of star formation. Finally, we discuss the implications for future LIGO-Virgo-KAGRA gravitational wave observations.
more »
« less
- Award ID(s):
- 2310362
- PAR ID:
- 10556484
- Publisher / Repository:
- EDP Sciences
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 686
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A106
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In their most recent observing run, the LIGO-Virgo-KAGRA Collaboration observed gravitational waves from compact binary mergers with highly asymmetric mass ratios, including both binary black holes (BBHs) and neutron star-black holes (NSBHs). It appears that NSBHs with mass ratiosq≃ 0.2 are more common than equally asymmetric BBHs, but the reason for this remains unclear. We use the binary population synthesis codecosmicto investigate the evolutionary pathways leading to the formation and merger of asymmetric compact binaries. We find that within the context of isolated binary stellar evolution, most asymmetric mergers start off as asymmetric stellar binaries. Because of the initial asymmetry, these systems tend to first undergo a dynamically unstable mass transfer phase. However, after the first star collapses into a compact object, the mass ratio is close to unity and the second phase of mass transfer is usually stable. According to our simulations, this stable mass transfer fails to shrink the orbit enough on its own for the system to merge. Instead, the natal kick received by the second-born compact object during its collapse is key in determining how many of these systems can merge. For the most asymmetric systems with mass ratios ofq≤ 0.1, the merging systems in our models receive an average kick magnitude of 255 km s−1during the second collapse, while the average kick for non-merging systems is 59 km s−1. Because lower mass compact objects, like neutron stars, are expected to receive larger natal kicks than higher mass BHs, this may explain why asymmetric NSBH systems merge more frequently than asymmetric BBH systems.more » « less
-
ABSTRACT Merging black holes (BHs) are expected to produce remnants with large dimensionless spin parameters (aspin ∼ 0.7). However, gravitational wave (GW) observations with LIGO–Virgo–Kagra (LVK) suggest that merging BHs are consistent with modestly positive but not high spin (aspin ∼ 0.2), causing tension with models suggesting that high-mass mergers are produced by hierarchical merger channels. Some BHs also show evidence for strong in-plane spin components. Here, we point out that spin-down of BHs due to eccentric prograde post-merger orbits within the gas of an active galactic nucleus (AGN) disc can yield BHs with masses in the upper mass gap, but only modestly positive aspin, and thus observations of BHs with low spin do not rule out hierarchical models. We also point out that the fraction of binary black hole (BBH) mergers with significant in-plane spin components is a strong test of interactions between disc BBHs and nuclear spheroid orbiters. Spin magnitude and spin tilt constraints from LVK observations of BBHs are an excellent test of dynamics of BHs in AGN discs, disc properties, and the nuclear clusters interacting with AGNs.more » « less
-
Abstract With the growing number of binary black hole (BBH) mergers detected by LIGO/Virgo/KAGRA, several systems have become difficult to explain via isolated binary evolution, having components in the pair-instability mass gap, high orbital eccentricities, and/or spin–orbit misalignment. Here we focus on GW191109_010717, a BBH merger with component masses of 65 − 11 + 11 and 47 − 13 + 15 M ⊙ and an effective spin of − 0.29 − 0.31 + 0.42 , which could imply a spin–orbit misalignment of more than π /2 rad for at least one of its components. Besides its component masses being in the pair-instability mass gap, we show that isolated binary evolution is unlikely to reproduce the proposed spin–orbit misalignment of GW191109 with high confidence. On the other hand, we demonstrate that BBHs dynamically assembled in dense star clusters would naturally reproduce the spin–orbit misalignment and masses of GW191109 and the rates of GW191109-like events if at least one of the components were to be a second-generation BH. Finally, we generalize our results to all events with a measured negative effective spin, arguing that GW200225 also has a likely dynamical origin.more » « less
-
Abstract Orbital eccentricity is one of the most robust discriminators for distinguishing between dynamical and isolated formation scenarios of binary black hole mergers using gravitational-wave observatories such as LIGO and Virgo. Using state-of-the-art cluster models, we show how selection effects impact the detectable distribution of eccentric mergers from clusters. We show that the observation (or lack thereof) of eccentric binary black hole mergers can significantly constrain the fraction of detectable systems that originate from dynamical environments, such as dense star clusters. After roughly 150 observations, observing no eccentric binary signals would indicate that clusters cannot make up the majority of the merging binary black hole population in the local universe (95% credibility). However, if dense star clusters dominate the rate of eccentric mergers and a single system is confirmed to be measurably eccentric in the first and second gravitational-wave transient catalogs, clusters must account for at least 14% of detectable binary black hole mergers. The constraints on the fraction of detectable systems from dense star clusters become significantly tighter as the number of eccentric observations grows and will be constrained to within 0.5 dex once 10 eccentric binary black holes are observed.more » « less