Elastic continuum mechanical models are widely used to compute deformations due to pressure changes in buried cavities, such as magma reservoirs. In general, analytical models are fast but can be inaccurate as they do not correctly satisfy boundary conditions for many geometries, while numerical models are slow and may require specialized expertise and software. To overcome these limitations, we trained supervised machine learning emulators (model surrogates) based on parallel partial Gaussian processes which predict the output of a finite element numerical model with high fidelity but >1,000× greater computational efficiency. The emulators are based on generalized nondimensional forms of governing equations for finite non‐dipping spheroidal cavities in elastic halfspaces. Either cavity volume change or uniform pressure change boundary conditions can be specified, and the models predict both surface displacements and cavity (pore) compressibility. Because of their computational efficiency, using the emulators as numerical model surrogates can greatly accelerate data inversion algorithms such as those employing Bayesian Markov chain Monte Carlo sampling. The emulators also permit a comprehensive evaluation of how displacements and cavity compressibility vary with geometry and material properties, revealing the limitations of analytical models. Our open‐source emulator code can be utilized without finite element software, is suitable for a wide range of cavity geometries and depths, includes an estimate of uncertainties associated with emulation, and can be used to train new emulators for different source geometries.
more »
« less
PARALLEL PARTIAL EMULATION IN APPLICATIONS
Inference, optimization, and inverse problems are but three examples of mathematical operations that require the repeated solution of a complex system of mathematical equations. To this end, surrogates are often used to approximate the output of these large computer simulations, providing fast and cheap approximation solutions. Statistical emulators are surrogates that, in addition to predicting the mean behavior of the system, provide an estimate of the error in that prediction. Classical Gaussian stochastic process emulators predict scalar outputs based on a modest number of input parameters. Making predictions across a space-time field of input variables is not feasible using classical Gaussian process methods. Parallel partial emulation is a new statistical emulator methodology that predicts a field of outputs based on the input parameters. Parallel partial emulation is constructed as a Gaussian process in parameter space, but no correlation among space or time points is assumed. Thus the computational work of parallel partial emulation scales as the cube of the number of input parameters (as traditional Gaussian Process emulation) and linearly with a space-time grid. The numerical methods used in numerical simulations are often designed to exploit properties of the equations tobe solved. For example, modern solvers for hyperbolic conservation laws satisfy conservation at each time step, insuring overall conservation of the physical variables. Similarly, symplectic methods are used to solve Hamiltonian problems in physics. It is of interest, then, to study whether parallel partial emulation predictions inherit properties possessed by the simulation outputs. Does an emulated solution of a conservation law preserve the conserved quantities? Does an emulator of a Hamiltonian system preserve the energy? This paper investigates the properties of emulator predictions, in the context of systems of partial differential equations. We study conservation properties for three different kinds ofequations-conservation laws, reaction-diffusion systems, and a Hamiltonian system.We also investigate the effective convergence, in parameter space, of the predicted solution of a highly nonlinear system modeling shape memory alloys.
more »
« less
- Award ID(s):
- 2053874
- PAR ID:
- 10556486
- Publisher / Repository:
- Begel House
- Date Published:
- Journal Name:
- International Journal for Uncertainty Quantification
- Volume:
- 14
- Issue:
- 6
- ISSN:
- 2152-5080
- Page Range / eLocation ID:
- 1 to 15
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We provide a short introduction to the devising of a special type of methods for numerically approximating the solution of Hamiltonian partial differential equations. These methods use Galerkin space-discretizations which result in a system of ODEs displaying a discrete version of the Hamiltonian structure of the original system. The resulting system of ODEs is then discretized by a symplectic time-marching method. This combination results in high-order accurate, fully discrete methods which can preserve the invariants of the Hamiltonian defining the ODE system. We restrict our attention to linear Hamiltonian systems, as the main results can be obtained easily and directly, and are applicable to many Hamiltonian systems of practical interest including acoustics, elastodynamics, and electromagnetism. After a brief description of the Hamiltonian systems of our interest, we provide a brief introduction to symplectic time-marching methods for linear systems of ODEs which does not require any background on the subject. We describe then the case in which finite-difference space-discretizations are used and focus on the popular Yee scheme (1966) for electromagnetism. Finally, we consider the case of finite-element space discretizations. The emphasis is placed on the conservation properties of the fully discrete schemes. We end by describing ongoing work.more » « less
-
Preservation of linear and quadratic invariants by numerical integrators has been well studied. However, many systems have linear or quadratic observables that are not invariant, but which satisfy evolution equations expressing important properties of the system. For example, a time-evolution PDE may have an observable that satisfies a local conservation law, such as the multisymplectic conservation law for Hamiltonian PDEs. We introduce the concept of functional equivariance, a natural sense in which a numerical integrator may preserve the dynamics satisfied by certain classes of observables, whether or not they are invariant. After developing the general framework, we use it to obtain results on methods preserving local conservation laws in PDEs. In particular, integrators preserving quadratic invariants also preserve local conservation laws for quadratic observables, and symplectic integrators are multisymplectic.more » « less
-
Observational estimates of Antarctic ice loss have accelerated in recent decades, and worst-case scenarios of modeling studies have suggested potentially catastrophic sea level rise (~2 meters) by the end of the century. However, modeled contributions to global mean sea level from the Antarctic ice-sheet (AIS) in the 21st century are highly uncertain, in part because ice-sheet model parameters are poorly constrained. Individual ice-sheet model runs are also deterministic and not computationally efficient enough to generate the continuous probability distributions required for incorporation into a holistic framework of probabilistic sea-level projections. To address these shortfalls, we statistically emulate an ice-sheet model using Gaussian Process (GP) regression. GP modeling is a non-parametric machine-learning technique which maps inputs (e.g. forcing or model parameters) to target outputs (e.g. sea-level contributions from the Antarctic ice-sheet) and has the inherent and important advantage that emulator uncertainty is explicitly quantified. We construct emulators for the last interglacial period and an RCP8.5 scenario, and separately for the western, eastern, and total AIS. Separate emulation of western and eastern AIS is important because their evolutions and physical responses to climate forcing are distinct. The emulators are trained on 196 ensemble members for each scenario, composed by varying the parameters of maximum rate of ice-cliff wastage and the coefficient of hydrofracturing. We condition the emulators on last interglacial proxy sea-level records and modern GRACE measurements and exclude poor-fitting ensemble members. The resulting emulators are sampled to produce probability distributions that fill intermediate gaps between discrete ice-sheet model outcomes. We invert emulated high and low probability sea-level contributions in 2100 to explore 21st century evolution pathways; results highlight the deep uncertainty of ice-sheet model physics and the importance of using observations to narrow the range of parameters. Our approach is designed to be flexible such that other ice-sheet models or parameter spaces may be substituted and explored with the emulator.more » « less
-
A statistical emulator can be used as a surrogate of complex physics-based calculations to drastically reduce the computational cost. Its successful implementation hinges on an accurate representation of the nonlinear response surface with a high-dimensional input space. Conventional “space-filling” designs, including random sampling and Latin hypercube sampling, become inefficient as the dimensionality of the input variables increases, and the predictive accuracy of the emulator can degrade substantially for a test input distant from the training input set. To address this fundamental challenge, we develop a reliable emulator for predicting complex functionals by active learning with error control (ALEC). The algorithm is applicable to infinite-dimensional mapping with high-fidelity predictions and a controlled predictive error. The computational efficiency has been demonstrated by emulating the classical density functional theory (cDFT) calculations, a statistical-mechanical method widely used in modeling the equilibrium properties of complex molecular systems. We show that ALEC is much more accurate than conventional emulators based on the Gaussian processes with “space-filling” designs and alternative active learning methods. In addition, it is computationally more efficient than direct cDFT calculations. ALEC can be a reliable building block for emulating expensive functionals owing to its minimal computational cost, controllable predictive error, and fully automatic features.more » « less
An official website of the United States government

