skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AC Power Flow Informed Parameter Learning for DC Power Flow Network Equivalents
This paper presents an algorithm to optimize the parameters of power systems equivalents to enhance the accuracy of the DC power flow approximation in reduced networks. Based on a zonal division of the network, the algorithm produces a reduced power system equivalent that captures inter-zonal flows with aggregated buses and equivalent transmission lines. The algorithm refines coefficient and bias parameters for the DC power flow model of the reduced network, aiming to minimize discrepancies between inter-zonal flows in DC and AC power flow results. Using optimization methods like Broyden-Fletcher-Goldfarb-Shanno (BFGS), Limited-memory BFGS (L-BFGS), and Truncated Newton Conjugate-Gradient (TNC) in an offline training phase, these parameters boost the accuracy of online DC power flow computations. In contrast to existing network equivalencing methods, the proposed algorithm optimizes accuracy over a specified range of operation as opposed to only considering a single nominal point. Numerical tests demonstrate substantial accuracy improvements over traditional equivalencing and approximation methods.  more » « less
Award ID(s):
2145564
PAR ID:
10556508
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-3120-2
Format(s):
Medium: X
Location:
College Station, TX, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. The Optimal Power Shutoff (OPS) problem is an optimization problem that makes power line de-energization decisions in order to reduce the risk of igniting a wildfire, while minimizing the load shed of customers. This problem, with DC linear power flow equations, has been used in many studies in recent years. However, using linear approximations for power flow when making decisions on the network topology is known to cause challenges with AC feasibility of the resulting network, as studied in the related contexts of optimal transmission switching or grid restoration planning. This paper explores the accuracy of the DC OPS formulation and the ability to recover an AC-feasible power flow solution after de-energization decisions are made. We also extend the OPS problem to include variants with the AC, Second-Order-Cone, and Network-Flow power flow equations, and compare them to the DC approximation with respect to solution quality and time. The results highlight that the DC approximation overestimates the amount of load that can be served, leading to poor de-energization decisions. The AC and SOC-based formulations are better, but prohibitively slow to solve for even modestly sized networks thus demonstrating the need for new solution methods with better trade-offs between computational time and solution quality. 
    more » « less
  2. This paper presents an algorithm for restoring AC power flow feasibility from solutions to simplified optimal power flow (OPF) problems, including convex relaxations, power flow approximations, and machine learning (ML) models. The proposed algorithm employs a state estimation-based post-processing technique in which voltage phasors, power injections, and line flows from solutions to relaxed, approximated, or ML-based OPF problems are treated similarly to noisy measurements in a state estimation algorithm. The algorithm leverages information from various quantities to obtain feasible voltage phasors and power injections that satisfy the AC power flow equations. Weight and bias parameters are computed offline using an adaptive stochastic gradient descent method. By automatically learning the trustworthiness of various outputs from simplified OPF problems, these parameters inform the online computations of the state estimation-based algorithm to both recover feasible solutions and characterize the performance of power flow approximations, relaxations, and ML models. Furthermore, the proposed algorithm can simultaneously utilize combined solutions from different relaxations, approximations, and ML models to enhance performance. Case studies demonstrate the effectiveness and scalability of the proposed algorithm, with solutions that are both AC power flow feasible and much closer to the true AC OPF solutions than alternative methods, often by several orders of magnitude in the squared two-norm loss function. 
    more » « less
  3. null (Ed.)
    This paper develops an ensemble learning-based linearization approach for power flow with reactive power modeled, where the polynomial regression (PR) is first used as a basic learner to capture the linear relationships between the bus voltages as the independent variables and the active or reactive power as the dependent variable in rectangular coordinates. Then, gradient boosting (GB) and bagging as ensemble learning methods are introduced to combine all basic learners to boost the model performance. The inferred linear power flow model is applied to solve the well-known optimal power flow (OPF) problem. The simulation results on IEEE standard power systems indicate that (1) ensemble learning methods can significantly improve the efficiency of PR, and GB works better than bagging; (2) as for solving OPF, the data-driven model outperforms the DC model and the SDP relaxation in both accuracy, and computational efficiency. 
    more » « less
  4. A comprehensive understanding of the topology of the electric power transmission network (EPTN) is essential for reliable and robust control of power systems. While existing research primarily relies on domain-specific methods, it lacks data-driven approaches that have proven effective in modeling the topology of complex systems. To address this gap, this paper explores the potential of data-driven methods for more accurate and adaptive solutions to uncover the true underlying topology of EPTNs. First, this paper examines Gaussian Graphical Models (GGM) to create an EPTN network graph (i.e., undirected simple graph). Second, to further refine and validate this estimated network graph, a physics-based, domain specific refinement algorithm is proposed to prune false edges and construct the corresponding electric power flow network graph (i.e., directed multi-graph). The proposed method is tested using a synchrophasor dataset collected from a two-area, four-machine power system simulated on the real-time digital simulator (RTDS) platform. Experimental results show both the network and flow graphs can be reconstructed using various operating conditions and topologies with limited failure cases. 
    more » « less
  5. A crucial challenge for data-parallel clusters is achieving high application-level communication efficiency for structured traffic flows (a.k.a. Coflows) from distributed data processing applications. A range of recent works focus on designing network scheduling algorithms with predetermined Coflow placement, i.e. the endpoints of subflows within a Coflow are preset. However, the underlying Coflow placement problem and its decisive impact on scheduling efficiency have long been overlooked. It is hard to find good placements for Coflows. At the intra-Coflow level, constituent flows are related and therefore their placement decisions are dependent. Thus, strategies extended from flow-by-flow placement is sub-optimal due to negligence of the inter-flow relationship in a Coflow. At the inter-Coflow level, placing a new Coflow may introduce contentions with existing Coflows, which changes communication efficiency. This paper is the first to study the Coflow placement problem with careful considerations of the inter-flow relationship in Coflows. We formulate the Coflow placement problem and propose a Coflow placement algorithm. Under realistic traffic in various settings, our algorithm reduces the average completion time for Coflows by up to 26%. 
    more » « less