skip to main content

Title: SFS: smart OS Scheduling for Serverless Functions
Serverless computing enables a new way of building and scaling cloud applications by allowing developers to write fine-grained serverless or cloud functions. The execution duration of a cloud function is typically short---ranging from a few milliseconds to hundreds of seconds. However, due to resource contentions caused by public clouds' deep consolidation, the function execution duration may get significantly prolonged and fail to accurately account for the function's true resource usage. We observe that the function duration can be highly unpredictable with huge amplification of more than 50× for an open-source FaaS platform (OpenLambda). Our experiments show that the OS scheduling policy of cloud functions' host server can have a crucial impact on performance. The default Linux scheduler, CFS (Completely Fair Scheduler), being oblivious to workloads, frequently context-switches short functions, causing a turnaround time that is much longer than their service time. We propose SFS (Smart Function Scheduler), which works entirely in the user space and carefully orchestrates existing Linux FIFO and CFS schedulers to approximate Shortest Remaining Time First (SRTF). SFS uses two-level scheduling that seamlessly combines a new FILTER policy with Linux CFS, to trade off increased duration of long functions for significant performance improvement for short functions. We implement SFS in the Linux user space and port it to OpenLambda. Evaluation results show that SFS significantly improves short functions' duration with a small impact on relatively longer functions, compared to CFS.  more » « less
Award ID(s):
2045680 1919075 2007976 2134689
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Conference for High Performance Computing Networking Storage and Analysis
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The increased use of micro-services to build web applications has spurred the rapid growth of Function-as-a-Service (FaaS) or serverless computing platforms. While FaaS simplifies provisioning and scaling for application developers, it introduces new challenges in resource management that need to be handled by the cloud provider. Our analysis of popular serverless workloads indicates that schedulers need to handle functions that are very short-lived, have unpredictable arrival patterns, and require expensive setup of sandboxes. The challenge of running a large number of such functions in a multi-tenant cluster makes existing scheduling frameworks unsuitable. We present Archipelago, a platform that enables low latency request execution in a multi-tenant serverless setting. Archipelago views each application as a DAG of functions, and every DAG in associated with a latency deadline. Archipelago achieves its per-DAG request latency goals by: (1) partitioning a given cluster into a number of smaller worker pools, and associating each pool with a semi-global scheduler (SGS), (2) using a latency-aware scheduler within each SGS along with proactive sandbox allocation to reduce overheads, and (3) using a load balancing layer to route requests for different DAGs to the appropriate SGS, and automatically scale the number of SGSs per DAG. Our testbed results show that Archipelago meets the latency deadline for more than 99% of realistic application request workloads, and reduces tail latencies by up to 36X compared to state-of-the-art serverless platforms. 
    more » « less
  2. Current serverless Function-as-a-Service (FaaS) platforms generally use simple, classic scheduling algorithms for distributing function invocations while ignoring FaaS characteristics such as rapid changes in resource utilization and the freeze-thaw life cycle. In this paper, we present FaaSRank, a function scheduler for serverless FaaS platforms based on information monitored from servers and functions. FaaSRank automatically learns scheduling policies through experience using reinforcement learning (RL) and neural networks supported by our novel Score-Rank-Select architecture. We implemented FaaSRank in Apache OpenWhisk, an open source FaaS platform, and evaluated performance against other baseline schedulers including OpenWhisk's default scheduler on two 13-node OpenWhisk clusters. For training and evaluation, we adapted real-world serverless workload traces provided by Microsoft Azure. For the duration of test workloads, FaaSRank sustained on average a lower number of inflight invocations 59.62 % and 70.43 % as measured on two clusters respectively. We also demonstrate the generalizability of FaaSRank for any workload. When trained using a composite of 50 episodes each for 10 distinct random workloads, FaaSRank reduced average function completion time by 23.05% compared to OpenWhisk's default scheduler. 
    more » « less
  3. Apache Mesos, a two-level resource scheduler, provides resource sharing across multiple users in a multi-tenant clustered environment. Computational resources (i.e., CPU, memory, disk, etc.) are distributed according to the Dominant Resource Fairness (DRF) policy. Mesos frameworks (users) receive resources based on their current usage and are responsible for scheduling their tasks within the allocation. We have observed that multiple frameworks can cause fairness imbalance in a multi-user environment. For example, a greedy framework consuming more than its fair share of resources can deny resource fairness to others. The user with the least Dominant Share is considered first by the DRF module to get its resource allocation. However, the default DRF implementation, in Apache Mesos' Master allocation module, does not consider the overall resource demands of the tasks in the queue for each user/framework. This lack of awareness can lead to poor performance as users without any pending task may receive more resource offers, and users with a queue of pending tasks can starve due to their high dominant shares. In a multi-tenant environment, the characteristics of frameworks and workloads must be understood by cluster managers to be able to define fairness based on not only resource share but also resource demand and queue wait time. We have developed a policy driven queue manager, Tromino, for an Apache Mesos cluster where tasks for individual frameworks can be scheduled based on each framework's overall resource demands and current resource consumption. Dominant Share and demand awareness of Tromino and scheduling based on these attributes can reduce (1) the impact of unfairness due to a framework specific configuration, and (2) unfair waiting time due to higher resource demand in a pending task queue. In the best case, Tromino can significantly reduce the average waiting time of a framework by using the proposed Demand-DRF aware policy. 
    more » « less
  4. null (Ed.)
    Serverless applications create an opportunity for more granular scheduling across machines in cloud platforms that can improve efficiency, especially if functions can be run within storage services to eliminate data movement. However, embedding code within storage services creates code isolation overheads that offset some of those savings. We argue for a new approach to serverless function scheduling that can look within serverless applications' functions, profile their data movement and networking costs, and model the impact of different code placement and isolation schemes for those costs. Beyond improvements in efficiency, such an approach would fuel innovation in cloud isolation schemes and programming abstractions, since a scheduler with a modular cost modeling approach could incorporate new schemes and automatically use them to improve efficiency for pre-existing applications. 
    more » « less
  5. We characterize production workloads of serverless DAGs at a major cloud provider. Our analysis highlights two major factors that limit performance: (a) lack of efficient communication methods between the serverless functions in the DAG, and (b) stragglers when a DAG stage invokes a set of parallel functions that must complete before starting the next DAG stage. To address these limitations, we propose WISEFUSE, an automated approach to generate an optimized execution plan for serverless DAGs for a user-specified latency objective or budget. We introduce three optimizations: (1) Fusion combines in-series functions together in a single VM to reduce the communication overhead between cascaded functions. (2) Bundling executes a group of parallel invocations of a function in one VM to improve resource sharing among the parallel workers to reduce skew. (3) Resource Allocation assigns the right VM size to each function or function bundle in the DAG to reduce the E2E latency and cost. We implement WISEFUSE to evaluate it experimentally using three popular serverless applications with different DAG structures, memory footprints, and intermediate data sizes. Compared to competing approaches and other alternatives, WISEFUSE shows significant improvements in E2E latency and cost. Specifically, for a machine learning pipeline, WISEFUSE achieves P95 latency that is 67% lower than Photons, 39% lower than Faastlane, and 90% lower than SONIC without increasing the cost. 
    more » « less