skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Linear and Angular Momentum Conserving Hybrid Particle/Grid Iteration for Volumetric Elastic Contact
We present a momentum conserving hybrid particle/grid iteration for resolving volumetric elastic collision. Our hybrid method uses implicit time stepping with a Lagrangian finite element discretization of the volumetric elastic material together with impulse-based collision-correcting momentum updates designed to exactly conserve linear and angular momentum. We use a two-step process for collisions: first we use a novel grid-based approach that leverages the favorable collision resolution properties of Particle-In-Cell (PIC) techniques, then we finalize with a classical collision impulse strategy utilizing continuous collision detection. Our PIC approach uses Affine-Particle-In-Cell momentum transfers as collision preventing impulses together with novel perfectly momentum conserving boundary resampling and downsampling operators that prevent artifacts in portions of the boundary where the grid resolution is of disparate resolution. We combine this with a momentum conserving augury iteration to remove numerical cohesion and model sliding friction. Our collision strategy has the same continuous collision detection as traditional approaches, however our hybrid particle/grid iteration drastically reduces the number of iterations required. Lastly, we develop a novel symmetric positive semi-definite Rayleigh damping model that increases the convexity of the nonlinear systems associated with implicit time stepping. We demonstrate the robustness and efficiency of our approach in a number of collision intensive examples.  more » « less
Award ID(s):
2213322
PAR ID:
10556518
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Proceedings of the ACM on Computer Graphics and Interactive Techniques
Date Published:
Journal Name:
Proceedings of the ACM on Computer Graphics and Interactive Techniques
Volume:
6
Issue:
3
ISSN:
2577-6193
Page Range / eLocation ID:
1 to 25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose theadaptive hybrid particle-grid flow mapmethod, a novel flow-map approach that leverages Lagrangian particles to simultaneously transport impulse and guide grid adaptation, introducing a fully adaptive flow map-based fluid simulation framework. The core idea of our method is to maintain flow-map trajectories separately on grid nodes and particles: the grid-based representation tracks long-range flow maps at a coarse spatial resolution, while the particle-based representation tracks both long and short-range flow maps, enhanced by their gradients, at a fine resolution. This hybrid Eulerian-Lagrangian flow-map representation naturally enables adaptivity for both advection and projection steps. We implement this method inCirrus, a GPU-based fluid simulation framework designed for octree-like adaptive grids enhanced with particle trackers. The efficacy of our system is demonstrated through numerical tests and various simulation examples, achieving up to 512 × 512 × 2048 effective resolution on an RTX 4090 GPU. We achieve a 1.5 to 2× speedup with our GPU optimization over the Particle Flow Map method on the same hardware, while the adaptive grid implementation offers efficiency gains of one to two orders of magnitude by reducing computational resource requirements. The source code has been made publicly available at: https://wang-mengdi.github.io/proj/25-cirrus/. 
    more » « less
  2. This paper introduces a new weighting scheme for particle-grid transfers that generates hybrid Lagrangian/Eulerian fluid simulations with uniform particle distributions and precise volume control. At its core, our approach reformulates the construction of Power Particles [de Goes et al. 2015] by computing volume-constrained density kernels. We employ these optimized kernels as particle domains within the Generalized Interpolation Material Point method (GIMP) in order to incorporate Power Particles into the Particle-In-Cell framework, hence the name the Power Particle-In-Cell method. We address the construction of volume-constrained density kernels as a regularized optimal transportation problem and describe an iterative solver based on localized Gaussian convolutions that leads to a significant performance speedup compared to [de Goes et al. 2015]. We also present novel extensions for handling free surfaces and solid obstacles that bypass the need for cell clipping and ghost particles. We demonstrate the advantages of our transfer weights by improving hybrid schemes for fluid simulation such as the Fluid Implicit Particle (FLIP) method and the Affine Particle-In-Cell (APIC) method with volume preservation and robustness to varying particle-per-cell ratio, while retaining low numerical dissipation, conserving linear and angular momenta, and avoiding particle reseeding or post-process relaxations. 
    more » « less
  3. In this paper, we propose and study first- and second-order (in time) stabilized linear finite element schemes for the incompressible Navier-Stokes (NS) equations. The energy, momentum, and angular momentum conserving (EMAC) formulation has emerged as a promising approach for conserving energy, momentum, and angular momentum of the NS equations, while the exponential scalar auxiliary variable (ESAV) has become a popular technique for designing linear energy-stable numerical schemes. Our method leverages the EMAC formulation and the Taylor-Hood element with grad-div stabilization for spatial discretization. We adopt the implicit-explicit backward differential formulas (BDFs) coupled with a novel stabilized ESAV approach for time stepping. For the solution process, we develop an efficient decoupling technique for the resulting fully-discrete systems so that only one linear Stokes solve is needed at each time step, which is similar to the cost of classic implicit-explicit BDF schemes for the NS equations. Robust optimal error estimates are successfully derived for both velocity and pressure for the two proposed schemes, with Gronwall constants that are particularly independent of the viscosity. Furthermore, it is rigorously shown that the grad-div stabilization term can greatly alleviate the viscosity-dependence of the mesh size constraint, which is required for error estimation when such a term is not present in the schemes. Various numerical experiments are conducted to verify the theoretical results and demonstrate the effectiveness and efficiency of the grad-div and ESAV stabilization strategies and their combination in the proposed numerical schemes, especially for problems with high Reynolds numbers. 
    more » « less
  4. We propose a novel solid-fluid interaction method for coupling elastic solids with impulse flow maps. Our key idea is to unify the representation of fluid and solid components as particle flow maps with different lengths and dynamics. The solid-fluid coupling is enabled by implementing two novel mechanisms: first, we developed an impulse-to-velocity transfer mechanism to unify the exchanged physical quantities; second, we devised a particle path integral mechanism to accumulate coupling forces along each flow-map trajectory. Our framework integrates these two mechanisms into an Eulerian-Lagrangian impulse fluid simulator to accommodate traditional coupling models, exemplified by the Material Point Method (MPM) and Immersed Boundary Method (IBM), within a particle flow map framework. We demonstrate our method's efficacy by simulating solid-fluid interactions exhibiting strong vortical dynamics, including various vortex shedding and interaction examples across swimming, falling, breezing, and combustion. 
    more » « less
  5. Abstract Current eddy‐permitting and eddy‐resolving ocean models require dissipation to prevent a spurious accumulation of enstrophy at the grid scale. We introduce a new numerical scheme for momentum advection in large‐scale ocean models that involves upwinding through a weighted essentially non‐oscillatory (WENO) reconstruction. The new scheme provides implicit dissipation and thereby avoids the need for an additional explicit dissipation that may require calibration of unknown parameters. This approach uses the rotational, “vector invariant” formulation of the momentum advection operator that is widely employed by global general circulation models. A novel formulation of the WENO “smoothness indicators” is key for avoiding excessive numerical dissipation of kinetic energy and enstrophy at grid‐resolved scales. We test the new advection scheme against a standard approach that combines explicit dissipation with a dispersive discretization of the rotational advection operator in two scenarios: (a) two‐dimensional turbulence and (b) three‐dimensional baroclinic equilibration. In both cases, the solutions are stable, free from dispersive artifacts, and achieve increased “effective” resolution compared to other approaches commonly used in ocean models. 
    more » « less