skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectropolarimetric Inversion in Four Dimensions with Deep Learning (SPIn4D). I. Overview, Magnetohydrodynamic Modeling, and Stokes Profile Synthesis
Abstract The National Science Foundation’s Daniel K. Inouye Solar Telescope (DKIST) will provide high-resolution, multiline spectropolarimetric observations that are poised to revolutionize our understanding of the Sun. Given the massive data volume, novel inference techniques are required to unlock its full potential. Here, we provide an overview of our “SPIn4D” project, which aims to develop deep convolutional neural networks (CNNs) for estimating the physical properties of the solar photosphere from DKIST spectropolarimetric observations. We describe the magnetohydrodynamic (MHD) modeling and the Stokes profile synthesis pipeline that produce the simulated output and input data, respectively. These data will be used to train a set of CNNs that can rapidly infer the four-dimensional MHD state vectors by exploiting the spatiotemporally coherent patterns in the Stokes profile time series. Specifically, our radiative MHD model simulates the small-scale dynamo actions that are prevalent in quiet-Sun and plage regions. Six cases with different mean magnetic fields have been explored; each case covers six solar-hours, totaling 109 TB in data volume. The simulation domain covers at least 25 × 25 × 8 Mm, with 16 × 16 × 12 km spatial resolution, extending from the upper convection zone up to the temperature minimum region. The outputs are stored at a 40 s cadence. We forward model the Stokes profile of two sets of Feilines at 630 and 1565 nm, which will be simultaneously observed by DKIST and can better constrain the parameter variations along the line of sight. The MHD model output and the synthetic Stokes profiles are publicly available, with 13.7 TB in the initial release.  more » « less
Award ID(s):
2008344 1848250
PAR ID:
10556722
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
976
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 204
Size(s):
Article No. 204
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Quiet-Sun regions cover most of the Sun's surface; their magnetic fields contribute significantly to solar chromospheric and coronal heating. However, characterizing the magnetic fields of the quiet Sun is challenging due to their weak polarization signal. The 4 m Daniel K. Inouye Solar Telescope (DKIST) is expected to improve our understanding of quiet-Sun magnetism. In this paper, we assess the diagnostic capability of the Diffraction Limited Near Infrared Spectropolarimeter (DL-NIRSP) instrument on DKIST for the energy transport processes in the quiet-Sun photosphere. To this end, we synthesize high-resolution, high-cadence Stokes profiles of the Fei630 nm lines using a realistic magnetohydrodynamic simulation, degrade them to emulate the DKIST/DL-NIRSP observations, and subsequently infer the vector magnetic and velocity fields. For the assessment, we first verify that a widely used flow tracking algorithm, the Differential Affine Velocity Estimator for Vector Magnetograms, works well for estimating the large-scale (>200 km) photospheric velocity fields with these high-resolution data. We then examine how the accuracy of the inferred velocity depends on the temporal resolution. Finally, we investigate the reliability of the Poynting flux estimate and its dependence on the model assumptions. The results suggest that the unsigned Poynting flux, estimated with existing schemes, can account for about 71.4% and 52.6% of the reference ground truth at log τ = 0.0 and log τ = 1 . However, the net Poynting flux tends to be significantly underestimated. The error mainly arises from the underestimated contribution of the horizontal motion. We discuss the implications for DKIST observations. 
    more » « less
  2. Abstract Between 2017 and 2024, the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory has observed numerous white-light solar flares (WLFs). HMI spectropolarimetric observations of certain WLFs, in particular the X9.3 flare of 2017 September 6, reveal one or more locations within the umbra or along the umbra/penumbra boundary of the flaring active region where the FeI6173 Å line briefly goes into full emission, indicating significant heating of the photosphere and lower chromosphere. For five flares featuring FeI6173 Å line-core emission, we perform spectropolarimetric analysis using HMI 90 s cadence Stokes data. For all investigated flares, line-core emission is observed to last for a single 90 s frame and is either concurrent with or followed by an increase in the line continuum intensity lasting one to two frames (90–180 s). Additionally, permanent changes to the StokesQ,U, and/orVprofiles were observed, indicating long-lasting nontransient changes to the photospheric magnetic field. These emissions coincided with local maxima in hard X-ray emission observed by Konus-Wind, as well as local maxima in the time derivative of soft X-ray emission observed by GOES 16-18. Comparison of the FeI6173 Å line profile synthesis for the ad hoc heating of the initial empirical VAL-S umbra model and quiescent-Sun (VAL-C-like) model indicates that the FeI6173 Å line emission in the white-light flare kernels could be explained by the strong heating of initially cool photospheric regions. 
    more » « less
  3. Abstract We present an interpretation of the recent Daniel K. Inouye Solar Telescope (DKIST) observations of propagating wave fronts in the lower solar atmosphere. Using MPS/University of Chicago MHD radiative magnetohydrodynamic simulations spanning the solar photosphere, the overshoot region, and the lower chromosphere, we identify three acoustic-wave source mechanisms, each occur at a different atmospheric height. We synthesize the DKIST Visible Broadband ImagerG-band, blue-continuum, and CaiiKsignatures of these waves at high spatial and temporal resolution, and conclude that the wave fronts observed by DKIST likely originate from acoustic sources at the top of the solar photosphere overshoot region and in the chromosphere proper. The overall importance of these local sources to the atmospheric energy and momentum budget of the solar atmosphere is unknown, but one of the excitation mechanisms identified (upward propagating shock interaction with down-welling chromospheric plasma resulting in acoustic radiation) may be an important shock dissipation mechanism. Additionally, the observed wave fronts may prove useful for ultralocal helioseismological inversions and promise to play an important diagnostic role at multiple atmospheric heights. 
    more » « less
  4. Abstract In situ measurements of the solar wind have been available for almost 60 years, and in that time plasma physics simulation capabilities have commenced and ground‐based solar observations have expanded into space‐based solar observations. These observations and simulations have yielded an increasingly improved knowledge of fundamental physics and have delivered a remarkable understanding of the solar wind and its complexity. Yet there are longstanding major unsolved questions. Synthesizing inputs from the solar wind research community, nine outstanding questions of solar wind physics are developed and discussed in this commentary. These involve questions about the formation of the solar wind, about the inherent properties of the solar wind (and what the properties say about its formation), and about the evolution of the solar wind. The questions focus on (1) origin locations on the Sun, (2) plasma release, (3) acceleration, (4) heavy‐ion abundances and charge states, (5) magnetic structure, (6) Alfven waves, (7) turbulence, (8) distribution‐function evolution, and (9) energetic‐particle transport. On these nine questions we offer suggestions for future progress, forward looking on what is likely to be accomplished in near future with data from Parker Solar Probe, from Solar Orbiter, from the Daniel K. Inouye Solar Telescope (DKIST), and from Polarimeter to Unify the Corona and Heliosphere (PUNCH). Calls are made for improved measurements, for higher‐resolution simulations, and for advances in plasma physics theory. 
    more » « less
  5. Context.Predicting geomagnetic events starts with an understanding of the Sun-Earth chain phenomena in which (interplanetary) coronal mass ejections (CMEs) play an important role in bringing about intense geomagnetic storms. It is not always straightforward to determine the solar source of an interplanetary coronal mass ejection (ICME) detected at 1 au. Aims.The aim of this study is to test by a magnetohydrodynamic (MHD) simulation the chain of a series of CME events detected from L1 back to the Sun in order to determine the relationship between remote and in situ CMEs. Methods.We analysed both remote-sensing observations and in situ measurements of a well-defined magnetic cloud (MC) detected at L1 occurring on 28 June 2013. The MHD modelling is provided by the 3D MHD European Heliospheric FORecasting Information Asset (EUHFORIA) simulation model. Results.After computing the background solar wind, we tested the trajectories of six CMEs occurring in a time window of five days before a well-defined MC at L1 that may act as the candidate of the MC. We modelled each CME using the cone model. The test involving all the CMEs indicated that the main driver of the well-defined, long-duration MC was a slow CME. For the corresponding MC, we retrieved the arrival time and the observed proton density. Conclusions.EUHFORIA confirms the results obtained in the George Mason data catalogue concerning this chain of events. However, their proposed solar source of the CME is disputable. The slow CME at the origin of the MC could have its solar source in a small, emerging region at the border of a filament channel at latitude and longitude equal to +14 degrees. 
    more » « less