skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on June 1, 2025

Title: Landscape Position Impacts on the Water Balance in the Chihuahuan Desert: Insights From Cosmic-Ray Neutron Sensing at Upland Watershed and Downstream Playa Sites
In the semiarid, water-limited deserts of the Southwest United States, soil moisture is a crucial factor influencing atmospheric, hydrologic, and ecological processes. These dynamics are driven by infrequent yet significant precipitation events that redistribute moisture and establish hydrologic connectivity across the landscape. The Chihuahuan Desert, particularly within its endorheic basins, exemplifies these large-scale interactions where a complex balance of hydrological fluxes is maintained within a closed system. These basins receive most of their precipitation in upland regions, from which surface runoff can lead to downstream connectivity. This connectivity is influenced by the local water balance, including interactions among precipitation, leakage, and evapotranspiration, which are essential for understanding soil moisture variability. Additionally, soil moisture is affected by soil profile characteristics, vegetation, and atmospheric conditions. Field-scale methods like Cosmic-Ray Neutron Sensing (CRNS) are more appropriate than point-scale in situ sensors for quantifying hydrologic connectivity between upland and downstream regions, as CRNS reliably captures soil moisture temporal dynamics over several hectares. This study examines these dynamics within the endorheic Jornada Basin of the Chihuahuan Desert, focusing on two contrasting sites: an Upland Watershed (UW) on a piedmont slope and a Downstream Playa (DP) in a valley bottom. Using CRNS and complementary water balance instrumentation, I compared soil moisture dynamics at these two sites from July 2022 to February 2024. My analysis centered on a significant precipitation event early in the study period that generated surface runoff and playa inundation, followed by an extended dry period. Although temporal variations in leakage and evapotranspiration are similar at both sites, their rates differ significantly. The UW experienced a higher drying rate, necessitating greater plant water uptake from the subsurface. This led to an increased upward leakage to sustain vegetation, resulting in a leakage value of -205 mm, indicating vertical plant water uptake. Conversely, at the DP, the inundation event was formed by 228 mm of surface runoff, supplementing water inputs from precipitation. This additional water reduced the need for upward soil water movement to sustain plant water uptake, resulting in a leakage value of -97 mm. These findings enhance our understanding of hydrologic fluxes within endorheic basins and improve the applicability of hydrological models and the downscaling of remotely sensed soil moisture products.  more » « less
Award ID(s):
2025166
PAR ID:
10556954
Author(s) / Creator(s):
Publisher / Repository:
ProQuest
Date Published:
Format(s):
Medium: X
Institution:
Arizona State University
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hydrologic connectivity refers to the processes and thresholds leading to water transport across a landscape. In dryland ecosystems, runoff production is mediated by the arrangement of vegetation and bare soil patches on hillslopes and the properties of ephemeral channels. In this study, we used runoff measurements at multiple scales in a small (4.67 ha) mixed shrubland catchment of the Chihuahuan Desert to identify controls on and thresholds of hillslope‐channel connectivity. By relating short‐ and long‐term hydrologic records, we also addressed whether observed changes in outlet discharge since 1977 were linked to modifications in hydrologic connectivity. Hillslope runoff production was controlled by the maximum rainfall intensity occurring in a 30‐min interval (I30), with small‐to‐negligible effects of antecedent surface soil moisture, vegetation cover, or slope aspect. AnI30threshold of nearly 10 mm/h activated runoff propagation from the shrubland hillslopes and through the main ephemeral channel, whereas anI30threshold of about 16 mm/h was required for discharge from the catchment outlet. Since storms rarely exceedI30, full hillslope‐channel connectivity occurs infrequently in the mixed shrubland, leading to <2% of the annual precipitation being converted into outlet discharge. Progressive decreases in outlet discharge since 1977 could not be explained by variations in precipitation metrics, includingI30, or the process of woody plant encroachment. Instead, channel modifications from the buildup of sediment behind measurement flumes may have increased transmission losses and reduced outlet discharge. Thus, alterations in channel properties can play an important role in the long‐term (45‐year) variations of rainfall–runoff dynamics of small desert catchments.

     
    more » « less
  2. The accelerating degradation of native grasslands is becoming a threat to the world’s biome supply and has raised serious environmental concerns such as desertification and dust storm. Given that the steppe grasslands, such as those located in the Inner Mongolia Plateau of north China, have a dry climatic condition, the grass growth closely relies on available soil water, which in turn depends on precipitation prior to the growing season (in particular from May to July). However, our understanding of steppe hydrology and water consumption by grasses is incomplete. In this study, the agro-hydrologic Soil Water Plant Atmosphere (SWAP) model was used to mimic the long-term variations in soil water and vegetation growth in a typical steppe grassland of north China to further understand how alterations of hydrologic processes are related to grassland degradation. A field experiment was conducted to collect the data needed to set up the model. The SWAP model was calibrated using continuous observations of soil moisture and soil temperature at various depths for a simulation period of 2014 to 2017. The results indicated that the SWAP model can be used to simulate the responses of soil moisture and vegetation growth to climates. Moreover, this study examines the water balance and chronological variations of precipitation, evapotranspiration, soil water, and runoff. This study will add new knowledge of steppe hydrologic processes into existing literature. 
    more » « less
  3. Abstract

    Precipitation is the primary driver of hydrological models, and its spatial and temporal variability have a great impact on water partitioning. However, in data‐sparse regions, uncertainty in precipitation estimates is high and the sensitivity of water partitioning to this uncertainty is unknown. This is a particular challenge in drylands (semi‐arid and arid regions) where the water balance is highly sensitive to rainfall, yet there is commonly a lack of in situ rain gauge data. To understand the impact of precipitation uncertainty on the water balance in drylands, here we have performed simulations with a process‐based hydrological model developed to characterize the water balance in arid and semi‐arid regions (DRYP: DRYland water Partitioning model). We performed a series of numerical analyses in the Upper Ewaso Ng'iro basin, Kenya driven by three gridded precipitation datasets with different spatio‐temporal resolutions (IMERG, MSWEP, and ERA5), evaluating simulations against streamflow observations and remotely sensed data products of soil moisture, actual evapotranspiration, and total water storage. We found that despite the great differences in the spatial distribution of rainfall across a climatic gradient within the basin, DRYP shows good performance for representing streamflow (KGE >0.6), soil moisture, actual evapotranspiration, and total water storage (r >0.5). However, the choice of precipitation datasets greatly influences surface (infiltration, runoff, and transmission losses) and subsurface fluxes (groundwater recharge and discharge) across different climatic zones of the Ewaso Ng'iro basin. Within humid areas, evapotranspiration does not show sensitivity to the choice of precipitation dataset, however, in dry lowland areas it becomes more sensitive to precipitation rates as water‐limited conditions develop. The analysis shows that the highest rates of precipitation produce high rates of diffuse recharge in Ewaso uplands and also propagate into runoff, transmission losses and, ultimately focused recharge, with the latter acting as the main mechanism of groundwater recharge in low dry areas. The results from this modelling exercise suggest that care must be taken in selecting forcing precipitation data to drive hydrological modelling efforts, especially in basins that span a climatic gradient. These results also suggest that more effort is required to reduce uncertainty between different precipitation datasets, which will in turn result in more consistent quantification of the water balance.

     
    more » « less
  4. Abstract Observations show increases in river discharge to the Arctic Ocean especially in winter over the last decades but the physical mechanisms driving these changes are not yet fully understood. We hypothesize that even in the absence of a precipitation increase, permafrost degradation alone can lead to increased annual river runoff. To test this hypothesis we perform 12 millennium-long simulations over an idealized hypothetical watershed (1 km 2 ) using a distributed, physically based water balance model (Water flow and Balance Simulation Model, WaSiM). The model is forced by both a hypothetical warming defined by an air temperature increase of 7.5 ∘ C over 100 years, and a corresponding cooling scenario. To assess model sensitivity we vary soil saturated hydraulic conductivity and lateral subsurface flow configuration. Under the warming scenario, changes in subsurface water transport due to ground temperature changes result in a 7%–14% increase in annual runoff accompanied by a 6%–20% decrease in evapotranspiration. The increase in runoff is most pronounced in winter. Hence, the simulations demonstrate that changes in permafrost characteristics due to climate warming and associated changes in evapotranspiration provide a plausible mechanism for the observed runoff increases in Arctic watersheds. In addition, our experiments show that when lateral subsurface moisture transport is not included, as commonly done in global-scale Earth System Models, the equilibrium water balance in response to the warming or cooling is similar to the water balance in simulations where lateral subsurface transport is included. However, the transient changes in water balance components prior to reaching equilibrium differ greatly between the two. For example, for high saturated hydraulic conductivity only when lateral subsurface transport is considered, a period of decreased runoff occurs immediately after the warming. This period is characterized by a positive change in soil moisture storage caused by the soil moisture deficit developed during prior cooling. 
    more » « less
  5. Endorheic drainage basins, those inland basins not connected directly to ocean, are essential for hydrological modeling of global and regional water balances, land surface water storage, gravity anomalies, sea level rise, etc. Within many hydrological model frameworks, river basins are defined by digital river networks through their flow direction and connectivity datasets. Here we present an improvement to gridded flow direction data and its derivatives produced from upscaled global 5 and 15 arc minute MERIT networks. We explicitly label endorheic and exorheic drainage basins and alter the delineation of endorheic basins by merging small inland watersheds to the adjacent host basins. The resulting datasets have a significantly reduced number of endorheic basins while preserving the total land portion of those basins since most of the merged catchments were inside other larger endorheic areas. We developed and present here the endorheic basin delineation method. This method performs an analysis of the contributing river and basin geometry relative to the location of the flow end point (i.e. potential endorheic lake), proximity of the latter to the drainage basin boundary and the elevation difference between the basin's lowest point and potential spillover location at the basin boundary. The new digital river network was validated using the University of New Hampshire Water Balance Model by comparing the water balance of endorheic inland depressions with modeled accumulation of water in their inland lakes based on the observed historical climate drivers used by WBM. 
    more » « less