skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Landscape Position Impacts on the Water Balance in the Chihuahuan Desert: Insights From Cosmic-Ray Neutron Sensing at Upland Watershed and Downstream Playa Sites
In the semiarid, water-limited deserts of the Southwest United States, soil moisture is a crucial factor influencing atmospheric, hydrologic, and ecological processes. These dynamics are driven by infrequent yet significant precipitation events that redistribute moisture and establish hydrologic connectivity across the landscape. The Chihuahuan Desert, particularly within its endorheic basins, exemplifies these large-scale interactions where a complex balance of hydrological fluxes is maintained within a closed system. These basins receive most of their precipitation in upland regions, from which surface runoff can lead to downstream connectivity. This connectivity is influenced by the local water balance, including interactions among precipitation, leakage, and evapotranspiration, which are essential for understanding soil moisture variability. Additionally, soil moisture is affected by soil profile characteristics, vegetation, and atmospheric conditions. Field-scale methods like Cosmic-Ray Neutron Sensing (CRNS) are more appropriate than point-scale in situ sensors for quantifying hydrologic connectivity between upland and downstream regions, as CRNS reliably captures soil moisture temporal dynamics over several hectares. This study examines these dynamics within the endorheic Jornada Basin of the Chihuahuan Desert, focusing on two contrasting sites: an Upland Watershed (UW) on a piedmont slope and a Downstream Playa (DP) in a valley bottom. Using CRNS and complementary water balance instrumentation, I compared soil moisture dynamics at these two sites from July 2022 to February 2024. My analysis centered on a significant precipitation event early in the study period that generated surface runoff and playa inundation, followed by an extended dry period. Although temporal variations in leakage and evapotranspiration are similar at both sites, their rates differ significantly. The UW experienced a higher drying rate, necessitating greater plant water uptake from the subsurface. This led to an increased upward leakage to sustain vegetation, resulting in a leakage value of -205 mm, indicating vertical plant water uptake. Conversely, at the DP, the inundation event was formed by 228 mm of surface runoff, supplementing water inputs from precipitation. This additional water reduced the need for upward soil water movement to sustain plant water uptake, resulting in a leakage value of -97 mm. These findings enhance our understanding of hydrologic fluxes within endorheic basins and improve the applicability of hydrological models and the downscaling of remotely sensed soil moisture products.  more » « less
Award ID(s):
2025166
PAR ID:
10556954
Author(s) / Creator(s):
Publisher / Repository:
ProQuest
Date Published:
Format(s):
Medium: X
Institution:
Arizona State University
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hydrologic connectivity refers to the processes and thresholds leading to water transport across a landscape. In dryland ecosystems, runoff production is mediated by the arrangement of vegetation and bare soil patches on hillslopes and the properties of ephemeral channels. In this study, we used runoff measurements at multiple scales in a small (4.67 ha) mixed shrubland catchment of the Chihuahuan Desert to identify controls on and thresholds of hillslope‐channel connectivity. By relating short‐ and long‐term hydrologic records, we also addressed whether observed changes in outlet discharge since 1977 were linked to modifications in hydrologic connectivity. Hillslope runoff production was controlled by the maximum rainfall intensity occurring in a 30‐min interval (I30), with small‐to‐negligible effects of antecedent surface soil moisture, vegetation cover, or slope aspect. AnI30threshold of nearly 10 mm/h activated runoff propagation from the shrubland hillslopes and through the main ephemeral channel, whereas anI30threshold of about 16 mm/h was required for discharge from the catchment outlet. Since storms rarely exceedI30, full hillslope‐channel connectivity occurs infrequently in the mixed shrubland, leading to <2% of the annual precipitation being converted into outlet discharge. Progressive decreases in outlet discharge since 1977 could not be explained by variations in precipitation metrics, includingI30, or the process of woody plant encroachment. Instead, channel modifications from the buildup of sediment behind measurement flumes may have increased transmission losses and reduced outlet discharge. Thus, alterations in channel properties can play an important role in the long‐term (45‐year) variations of rainfall–runoff dynamics of small desert catchments. 
    more » « less
  2. ABSTRACT Changes in the volume, rate, and timing of the snowmelt water pulse have profound implications for seasonal soil moisture, evapotranspiration (ET), groundwater recharge, and downstream water availability, especially in the context of climate change. Here, we present an empirical analysis of water available for runoff using five eddy covariance towers located in continental montane forests across a regional gradient of snow depth, precipitation seasonality, and aridity. We specifically investigated how energy‐water asynchrony (i.e., snowmelt timing relative to atmospheric demand), surface water input intensity (rain and snowmelt), and observed winter ET (winter AET) impact multiple water balance metrics that determine water available for runoff (WAfR). Overall, we found that WAfR had the strongest relationship with energy‐water asynchrony (adjustedr2 = 0.52) and that winter AET was correlated to total water year evapotranspiration but not to other water balance metrics. Stepwise regression analysis demonstrated that none of the tested mechanisms were strongly related to the Budyko‐type runoff anomaly (highest adjustedr2 = 0.21). We, therefore, conclude that WAfR from continental montane forests is most sensitive to the degree of energy‐water asynchrony that occurs. The results of this empirical study identify the physical mechanisms driving variability of WAfR in continental montane forests and are thus broadly relevant to the hydrologic management and modelling communities. 
    more » « less
  3. The accelerating degradation of native grasslands is becoming a threat to the world’s biome supply and has raised serious environmental concerns such as desertification and dust storm. Given that the steppe grasslands, such as those located in the Inner Mongolia Plateau of north China, have a dry climatic condition, the grass growth closely relies on available soil water, which in turn depends on precipitation prior to the growing season (in particular from May to July). However, our understanding of steppe hydrology and water consumption by grasses is incomplete. In this study, the agro-hydrologic Soil Water Plant Atmosphere (SWAP) model was used to mimic the long-term variations in soil water and vegetation growth in a typical steppe grassland of north China to further understand how alterations of hydrologic processes are related to grassland degradation. A field experiment was conducted to collect the data needed to set up the model. The SWAP model was calibrated using continuous observations of soil moisture and soil temperature at various depths for a simulation period of 2014 to 2017. The results indicated that the SWAP model can be used to simulate the responses of soil moisture and vegetation growth to climates. Moreover, this study examines the water balance and chronological variations of precipitation, evapotranspiration, soil water, and runoff. This study will add new knowledge of steppe hydrologic processes into existing literature. 
    more » « less
  4. Abstract Woody plant encroachment is a global phenomenon whereby shrubs or trees replace grasses. The hydrological consequences of this ecological shift are of broad interest in ecohydrology, yet little is known of how plant and intercanopy patch dynamics, distributions, and connectivity influence catchment‐scale responses. To address this gap, we established research catchments in the Sonoran and Chihuahuan Deserts (near Green Valley, Arizona and near Las Cruces, New Mexico, respectively) that represent shrub encroachment in contrasting arid climates. Our main goals in the coordinated observations were to: (a) independently measure the components of the catchment water balance, (b) deploy sensors to quantify the spatial patterns of ecohydrological processes, (c) use novel methods for characterizing catchment properties, and (d) assess shrub encroachment impacts on ecohydrological processes through modelling studies. Datasets on meteorological variables; energy, radiation, and CO2fluxes; evapotranspiration; soil moisture and temperature; and runoff at various scales now extend to nearly 10 years of observations at each site, including both wet and dry periods. Here, we provide a brief overview of data collection efforts and offer suggestions for how the coordinated datasets can be exploited for ecohydrological inferences and modelling studies. Given the representative nature of the catchments, the available databases can be used to generalize findings to other catchments in desert landscapes. 
    more » « less
  5. Abstract Observations show increases in river discharge to the Arctic Ocean especially in winter over the last decades but the physical mechanisms driving these changes are not yet fully understood. We hypothesize that even in the absence of a precipitation increase, permafrost degradation alone can lead to increased annual river runoff. To test this hypothesis we perform 12 millennium-long simulations over an idealized hypothetical watershed (1 km 2 ) using a distributed, physically based water balance model (Water flow and Balance Simulation Model, WaSiM). The model is forced by both a hypothetical warming defined by an air temperature increase of 7.5 ∘ C over 100 years, and a corresponding cooling scenario. To assess model sensitivity we vary soil saturated hydraulic conductivity and lateral subsurface flow configuration. Under the warming scenario, changes in subsurface water transport due to ground temperature changes result in a 7%–14% increase in annual runoff accompanied by a 6%–20% decrease in evapotranspiration. The increase in runoff is most pronounced in winter. Hence, the simulations demonstrate that changes in permafrost characteristics due to climate warming and associated changes in evapotranspiration provide a plausible mechanism for the observed runoff increases in Arctic watersheds. In addition, our experiments show that when lateral subsurface moisture transport is not included, as commonly done in global-scale Earth System Models, the equilibrium water balance in response to the warming or cooling is similar to the water balance in simulations where lateral subsurface transport is included. However, the transient changes in water balance components prior to reaching equilibrium differ greatly between the two. For example, for high saturated hydraulic conductivity only when lateral subsurface transport is considered, a period of decreased runoff occurs immediately after the warming. This period is characterized by a positive change in soil moisture storage caused by the soil moisture deficit developed during prior cooling. 
    more » « less