skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predicting micro/nanoscale colloidal interactions through local neighborhood graph neural networks
Understanding interparticle interactions has been one of the most important topics of research in the field of micro/nanoscale materials. Many significant characteristics of such materials directly stem from the way their building blocks interact with each other. In this work, we investigate the efficacy of a specific category of Machine Learning (ML) methods known as interaction networks in predicting interparticle interactions within colloidal systems. We introduce and study Local Neighborhood Graph Neural Networks (LN-GNNs), defined according to the local environment of colloidal particles derived from particle trajectory data. The LN-GNN framework is trained for unique categories of particle neighborhood environments in order to predict interparticle interactions. We compare the performance of the LN-GNN to a baseline interaction network with a simpler architecture and to an Instance-Based ML algorithm, which is computationally more expensive. We find that the prediction performance of LN-GNN measured as an average normalized mean absolute error outperforms the baseline interaction network by a factor of 2–10 for different local neighborhood configurations. Furthermore, LN-GNN’s performance turns out to be very comparable to the instance-based ML framework while being an order of magnitude less expensive in terms of the required computation time. The results of this work can provide the foundations for establishing accurate models of colloidal particle interactions that are derived from real particle trajectory data.  more » « less
Award ID(s):
2025319
PAR ID:
10557168
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
134
Issue:
23
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Molecular interaction networks are powerful resources for molecular discovery. They are increasingly used with machine learning methods to predict biologically meaningful interactions. While deep learning on graphs has dramatically advanced the prediction prowess, current graph neural network (GNN) methods are mainly optimized for prediction on the basis of direct similarity between interacting nodes. In biological networks, however, similarity between nodes that do not directly interact has proved incredibly useful in the last decade across a variety of interaction networks. Here, we present SkipGNN, a graph neural network approach for the prediction of molecular interactions. SkipGNN predicts molecular interactions by not only aggregating information from direct interactions but also from second-order interactions, which we call skip similarity. In contrast to existing GNNs, SkipGNN receives neural messages from two-hop neighbors as well as immediate neighbors in the interaction network and non-linearly transforms the messages to obtain useful information for prediction. To inject skip similarity into a GNN, we construct a modified version of the original network, called the skip graph. We then develop an iterative fusion scheme that optimizes a GNN using both the skip graph and the original graph. Experiments on four interaction networks, including drug–drug, drug–target, protein–protein, and gene–disease interactions, show that SkipGNN achieves superior and robust performance. Furthermore, we show that unlike popular GNNs, SkipGNN learns biologically meaningful embeddings and performs especially well on noisy, incomplete interaction networks. 
    more » « less
  2. null (Ed.)
    The development of an efficient and powerful machine learning (ML) model for materials property prediction (MPP) remains an important challenge in materials science. While various techniques have been proposed to extract physicochemical features in MPP, graph neural networks (GNN) have also shown very strong capability in capturing effective features for high-performance MPP. Nevertheless, current GNN models do not effectively differentiate the contributions from different atoms. In this paper we develop a novel graph neural network model called GATGNN for predicting properties of inorganic materials. GATGNN is characterized by its composition of augmented graph-attention layers (AGAT) and a global attention layer. The application of AGAT layers and global attention layers respectively learn the local relationship among neighboring atoms and overall contribution of the atoms to the material's property; together making our framework achieve considerably better prediction performance on various tested properties. Through extensive experiments, we show that our method is able to outperform existing state-of-the-art GNN models while it can also provide a measurable insight into the correlation between the atoms and their material property. Our code can found on – https://github.com/superlouis/GATGNN. 
    more » « less
  3. In-time particle trajectory reconstruction in the Large Hadron Collider is challenging due to the high collision rate and numerous particle hits. Using GNN (Graph Neural Network) on FPGA has enabled superior accuracy with flexible trajectory classification. However, existing GNN architectures have inefficient resource usage and insufficient parallelism for edge classification. This paper introduces a resource-efficient GNN architecture on FPGAs for low latency particle tracking. The modular architecture facilitates design scalability to support large graphs. Leveraging the geometric properties of hit detectors further reduces graph complexity and resource usage. Our results on Xilinx UltraScale+ VU9P demonstrate 1625x and 1574x performance improvement over CPU and GPU respectively. 
    more » « less
  4. Despite recent progress in Graph Neural Networks (GNNs), explaining predictions made by GNNs remains a challenging and nascent problem. The leading method mainly considers the local explanations, i.e., important subgraph structure and node features, to interpret why a GNN model makes the prediction for a single instance, e.g. a node or a graph. As a result, the explanation generated is painstakingly customized at the instance level. The unique explanation interpreting each instance independently is not sufficient to provide a global understanding of the learned GNN model, leading to the lack of generalizability and hindering it from being used in the inductive setting. Besides, training the explanation model explaining for each instance is time-consuming for large-scale real-life datasets. In this study, we address these key challenges and propose PGExplainer, a parameterized explainer for GNNs. PGExplainer adopts a deep neural network to parameterize the generation process of explanations, which renders PGExplainer a natural approach to multi-instance explanations. Compared to the existing work, PGExplainer has better generalization ability and can be utilized in an inductive setting without training the model for new instances. Thus, PGExplainer is much more efficient than the leading method with significant speed-up. In addition, the explanation networks can also be utilized as a regularizer to improve the generalization power of existing GNNs when jointly trained with downstream tasks. Experiments on both synthetic and real-life datasets show highly competitive performance with up to 24.7% relative improvement in AUC on explaining graph classification over the leading baseline. 
    more » « less
  5. null (Ed.)
    The geometric organization and force networks of 3D dense suspensions that exhibit both shear thinning and thickening have been examined as a function of varying strength of interparticle attractive interactions using lubrication flow discrete element simulations. Significant rearrangement of the geometric topology does not occur at either the local or global scale as these systems transition across the shear thinning and shear thickening regimes. In contrast, massive rearrangements in the balance of attractive, lubrication, and contact forces are observed with interesting behavior of network growth and competition. In agreement with prior work, in shear thinning regions the attractive force is dominant, however as the shear thickening region is approached there is growth of lubrication forces. Lubrication forces oppose the attraction forces, but as viscosity continues to increase under increasing shear stress, the lubrication forces are dominated by contact forces that also resist attraction. Contact forces are the dominant interactions during shear thickening and are an order of magnitude higher than their values in the shear-thinning regime. At high attractive interaction strength, contact networks can form even under shear thinning conditions, however high shear stress is still required before contact networks become the driving mechanism of shear thickening. Analysis of the contact force network during shear thickening generally indicates a uniformly spreading network that rapidly forms across empty domains; however the growth patterns exhibit structure that is significantly dependent upon the strength of interparticle interactions, indicating subtle variations in the mechanism of shear thickening. 
    more » « less