Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Fluoride is one of the most consumed pharmaceuticals in the world, and its facility in preventing dental caries is recognized as one of the top 10 public health achievements of the 20th century. Although hydroxylapatite is often used as an analog of dental enamel, the details of the substitution of F for OH in the apatite anion column are not well known. Using new synthesis techniques, this study extends the structure work on P63/m apatites along the middle portion of the F-OH apatite join to compositions near the composition of fluoridated human teeth. The first F substituent in hydroxylapatite, near fluoridated dental enamel compositions, is dramatically underbonded by the surrounding Ca2 atoms (0.72 vu) in a hydroxylapatite matrix. However, the hydroxyl hydrogen is able to contribute 0.20 or 0.10 vu in hydrogen bonding, depending on whether the substitution creates a reversal site in the anion column; this hydrogen bonding alleviates the bonding requirements of the substituent F. As F concentrations increase along the join, the average hydroxyl contributes increasing amounts of hydrogen bonding to the F column anions; to mitigate the loss of its hydrogen bonding, the hydroxyl oxygen migrates toward the adjacent mirror plane that contains the bonded Ca2 atoms, and the triangle of bonded Ca2 ions concomitantly contracts. These two mechanisms increase bonding to the column hydroxyl oxygen from the adjoining Ca2 atoms to balance the loss of hydrogen bonding that stabilizes the substituent F column anion and the increasing concentration of underbonded F.more » « less
-
Abstract Polarized Fourier transform infrared (FTIR) microspectroscopy of the OH-stretching region of hydroxylapatite-chlorapatite solid solutions presents novel problems for the assignment of peaks to specific OH-Cl pairs. Crystal structure refinements of Hughes et al. (2016) identified new positions for column anions in synthetic mixed Cl-OH apatites, with three different column anion arrangements depending on composition. These structural refinements, combined with bond-valence calculations, allow for interpretation of the OH-stretching region. A peak at 3574 cm–1 is identified as that from end-member hydroxylapatite. A second major peak at 3548 cm–1 is only found in mixed chlorapatite-hydroxylapatite solid solutions, as is a third peak at 3592 cm–1. Both represent perturbations of the OH-stretching vibration as compared to hydroxylapatite, to lower and higher frequency, respectively. Both of the new peaks are the result of a Clb-OH sequence, with adjacent anions in crystallographically similar positions, both above or both below adjacent mirror planes. One configuration has the hydrogen atom pointed toward the chlorine atom. The second has the hydrogen of the OH group pointed away from the chlorine atom. Both configurations present novel problems. The shift to lower wavenumber at 3548 cm–1 is characteristic of hydrogen bonding in fluorapatite-hydroxylapatite mixtures, yet the distance between O(H) and Clb is too great to allow it. The shift of OH-stretching vibrations to lower wavenumber is produced through changes in polarization of intervening Cl-Ca2′ (or Ca2) and Ca2(′)-O3 bonds, which are affected by the presence of the large chlorine atom. Lowering the OH-stretching vibration mimics the expected effect of chlorine on a neighboring OH group in the apatite c-axis column, though without hydrogen bonding. The shift to higher wavenumbers, i.e., higher frequency at 3592 cm–1, is the opposite of that expected for hydrogen bonding between column anions in the apatite mineral group. It is ascribed to the interaction between an adjacent Clb and the oxygen end of an adjacent OH dipole. This pairing places an oxygen and a chlorine atom in close proximity. Possible means of accommodation are discussed. A ubiquitous peak at 3498 cm–1 represents hydrogen bonding between an OH and the OHa site, with an interoxygen distance of about 2.9 Å. Published modeling supports the hypothesis that the OHa site is occupied by an O rather than an OH. However, no clear counterpart to this pairing is observed in crystal structure refinements for specimens lacking OHa, although the infrared absorbance is present. The existence of oxyapatite is inferred from studies of plasma-sprayed biomaterials, but the crystal-lographic details of the substitution have remained elusive. A minor shoulder at 3517 cm–1 does not have a clear counterpart in the structural refinements. Sequences of three columnar anions (e.g., OH-Cl-OH or Cl-OH-OH) can be ruled out, but an unequivocal assignment awaits further research.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Rare earth elements (REE) in calcium apatite have been widely described in the literature. Based on the investigations of minerals and their synthetic analogs, the mechanism of substitution of REE3+ for Ca2+ and their structural positions are well established. Although the presence of REE in natural pyromorphite has been reported, the structural response of substitution of REE3+ for Pb2+ is not established. A better understanding of REE-rich Pb-apatite may facilitate the potential use of this mineral in industrial processes. Two La-doped pyromorphite analogs [Pb5(PO4)3Cl] and two control pyromorphite analogs (with the absence of La) were synthesized from aqueous solutions at 25 °C. Na+ and K+ were used as charge-compensating ions to facilitate the incorporation of trivalent REE cations (La3+ + Na+ ↔ 2Pb2+ and La3+ + K+ ↔ 2Pb2+). Microprobe analysis, scanning electron microscopy, and Raman spectroscopy were used to confirm the purity of obtained phases. High-precision crystal structure refinements (R1 = 0.0140–0.0225) of all four compounds were performed from single-crystal X-ray diffraction data. The La content varied from 0.12(1) to 0.19(1) atoms per formula unit with the counter ions of K+ and Na+, respectively. Both substituting ions were accommodated at the Pb1 site only. By comparing the La-doped pyromorphite analogs with their control samples, it was possible to detect small changes in bond distances and polyhedral volumes caused by the La substitution. Variations in individual and mean interatomic distances reflected the cumulative effect of both the amount of substitution and ionic radii of substituting ions (La3+, Na+, and K+).more » « less
-
Abstract Hydroxylpyromorphite, Pb5(PO4)3(OH), has been documented in the literature as a synthetic and naturally occurring phase for some time but has not previously been formally described as a mineral. It is fully described here for the first time using crystals collected underground in the Copps mine, Gogebic County, Michigan. Hydroxylpyromorphite occurs as aggregates of randomly oriented hexagonal prisms, primarily between about 20–35 μm in length and 6–10 μm in diameter. The mineral is colorless and translucent with vitreous luster and white streak. The Mohs hardness is ~3½–4; the tenacity is brittle, the fracture is irregular, and indistinct cleavage was observed on {001}. Electron microprobe analyses provided the empirical formula Pb4.97(PO4)3(OH0.69F0.33Cl0.06)Σ1.08. The calculated density using the measured composition is 7.32 g/cm3. Powder X-ray diffraction data for the type material is compared to data previously reported for hydroxylpyromorphite from the talc mine at Rabenwald, Austria, and from Whytes Cleuch, Wanlockhead, Scotland. Hydroxylpyromorphite is hexagonal, P63/m, at 100 K, a = 9.7872(14), c = 7.3070(10) Å, V = 606.16(19) Å3, and Z = 2. The structure [R1 = 0.0181 for 494 F>4σ(F) reflections] reveals that hydroxylpyromorphite adopts a column anion arrangement distinct from other members of the apatite supergroup due to the presence of fluorine and steric constraints imposed by stereoactive lone-pair electrons of Pb2+ cations. The F– anion sites are displaced slightly from hydroxyl oxygen anions, which allows for stronger hydrogen-bonding interactions that may in turn stabilize the observed column-anion arrangement and overall structure. Our modern characterization of hydroxylpyromorphite provides deeper understanding to a mineral useful for remediation of lead-contaminated water.more » « less
-
Understanding interparticle interactions has been one of the most important topics of research in the field of micro/nanoscale materials. Many significant characteristics of such materials directly stem from the way their building blocks interact with each other. In this work, we investigate the efficacy of a specific category of Machine Learning (ML) methods known as interaction networks in predicting interparticle interactions within colloidal systems. We introduce and study Local Neighborhood Graph Neural Networks (LN-GNNs), defined according to the local environment of colloidal particles derived from particle trajectory data. The LN-GNN framework is trained for unique categories of particle neighborhood environments in order to predict interparticle interactions. We compare the performance of the LN-GNN to a baseline interaction network with a simpler architecture and to an Instance-Based ML algorithm, which is computationally more expensive. We find that the prediction performance of LN-GNN measured as an average normalized mean absolute error outperforms the baseline interaction network by a factor of 2–10 for different local neighborhood configurations. Furthermore, LN-GNN’s performance turns out to be very comparable to the instance-based ML framework while being an order of magnitude less expensive in terms of the required computation time. The results of this work can provide the foundations for establishing accurate models of colloidal particle interactions that are derived from real particle trajectory data.more » « less
-
null (Ed.)Abstract: Solid-state ion conduction (SSIC) is a mechanism of ionic current that has garnered increasing attention for applications in all-solid-state batteries and atomic switches. The Ag/S SSIC system in β-Ag S, possessing the highest ionic conductivity of any known material, provides a unique opportunity to better understand the fundamental nature of SSIC. β-Ag S is topographically similar to binary perovskites except that it is cubic, leading to isotropic SSIC exceeding 4 S/cm. The dynamic nature of SSIC makes it difficult to study by observational means, where inherent time-averaging obscures correlations among atomic transit routes.Molecular dynamics (MD) is a tool ideally suited for gaining insight into large atomic systems with subnanosecond time resolutions. However, traditional MD potentials lack a description of bond-breaking/forming reactions, which are an essential aspect of SSIC and related memristic properties. This limitation can be overcome by using a reactive force field (ReaxFF), which enables the simulation of bonding reactions with DFT-level accuracy. In this study, we present a ReaxFF force field for the Ag/S system, optimized for simulating SSIC in β-Ag S. Training data consisted of crystal structures, Bader partial charges, and energies of various Ag/S clusters calculated at the DFT-level. Energies were obtained with Gaussian 16, using the PBEh1PBE hybrid functional with a triple-zeta correlation-consistent basis set. Multiobjective parameter optimization was accomplished with an updated form of the Genetic Algorithm for Reactive Force Fields (GARFfield). The force field was validated with potential energy and ion conductivity calculations, along with relevant structural features. Results were compared with equivalent simulations from other established potentials. This new ReaxFF force field will enable modeling of realistic SSIC configurations for Ag/S-based materials and provides a viable approach for extending ReaxFF to other SSIC systems in the future. This work was supported by the National Science Foundation under grant #2025319.more » « less
An official website of the United States government

Full Text Available