In this paper, we prove an ‘explicit reciprocity law’ relating Howard’s system of big Heegner points to a two-variable p-adic L-function (constructed here) interpolating the p-adic Rankin L-series of Bertolini–Darmon–Prasanna in Hida families. As applications, we obtain a direct relation between classical Heegner cycles and the higher weight specializations of big Heegner points, refining earlier work of the author, and prove the vanishing of Selmer groups of CM elliptic curves twisted by 2-dimensional Artin representations in cases predicted by the equivariant Birch and Swinnerton-Dyer conjecture.
more »
« less
Optimal Small Scale Equidistribution of Lattice Points on the Sphere, Heegner Points, and Closed Geodesics
Abstract We asymptotically estimate the variance of the number of lattice points in a thin, randomly rotated annulus lying on the surface of the sphere. This partially resolves a conjecture of Bourgain, Rudnick, and Sarnak. We also obtain estimates that are valid for all balls and annuli that are not too small. Our results have several consequences: for a conjecture of Linnik on sums of two squares and a “microsquare”, a conjecture of Bourgain and Rudnick on the number of lattice points lying in small balls on the surface of the sphere, the covering radius of the sphere, and the distribution of lattice points in almost all thin regions lying on the surface of the sphere. Finally, we show that for a density 1. subsequence of squarefree integers, the variance exhibits a different asymptotic behaviour for balls of volume with . We also obtain analogous results for Heegner points and closed geodesics. Interestingly, we are able to prove some slightly stronger results for closed geodesics than for Heegner points or lattice points on the surface of the sphere. A crucial observation that underpins our proof is the different behaviour of weighting functions for annuli and for balls. © 2022 Courant Institute of Mathematics and Wiley Periodicals LLC.
more »
« less
- Award ID(s):
- 2404956
- PAR ID:
- 10557202
- Publisher / Repository:
- arxiv
- Date Published:
- Journal Name:
- Communications on Pure and Applied Mathematics
- Volume:
- 75
- Issue:
- 9
- ISSN:
- 0010-3640
- Page Range / eLocation ID:
- 1936 to 1996
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper is inspired by Richards' work on large gaps between sums of two squares [10]. It is shown in [10] that there exist arbitrarily large values of λ and μ, with certain properties, do not contain any sums of two squares. Geometrically, these gaps between sums of two squares correspond to annuli in a certain area that do not contain any integer lattice points. A major objective of this paper is to investigate the sparse distribution of integer lattice points within annular regions. Examples and consequences are given. .more » « less
-
Abstract Let be the three‐dimensional space form of constant curvature , that is, Euclidean space , the sphere , or hyperbolic space . Let be a smooth, closed, strictly convex surface in . We define an outer billiard map on the four‐dimensional space of oriented complete geodesics of , for which the billiard table is the subset of consisting of all oriented geodesics not intersecting . We show that is a diffeomorphism when is quadratically convex. For , has a Kähler structure associated with the Killing form of . We prove that is a symplectomorphism with respect to its fundamental form and that can be obtained as an analogue to the construction of Tabachnikov of the outer billiard in defined in terms of the standard symplectic structure. We show that does not preserve the fundamental symplectic form on associated with the cross product on , for . We initiate the dynamical study of this outer billiard in the hyperbolic case by introducing and discussing a notion of holonomy for periodic points.more » « less
-
Mulzer, Wolfgang; Phillips, Jeff M (Ed.)Finding a totally geodesic surface, an embedded surface where the geodesics in the surface are also geodesics in the surrounding manifold, has been a problem of interest in the study of 3-manifolds. This has especially been of interest in hyperbolic 3-manifolds and knot complements, complements of piecewise-linearly embedded circles in the 3-sphere. This is due to Menasco-Reid’s conjecture stating that hyperbolic knot complements do not contain such surfaces. Here, we present an algorithm that determines whether a given surface is totally geodesic and an algorithm that checks whether a given 3-manifold contains a totally geodesic surface. We applied our algorithm on over 150,000 3-manifolds and discovered nine 3-manifolds with totally geodesic surfaces. Additionally, we verified Menasco-Reid’s conjecture for knots up to 12 crossings.more » « less
-
Abstract A translation surface is given by polygons in the plane, with sides identified by translations to create a closed Riemann surface with a flat structure away from finitely many singular points. Understanding geodesic flow on a surface involves understanding saddle connections. Saddle connections are the geodesics starting and ending at these singular points and are associated to a discrete subset of the plane. To measure the behavior of saddle connections of length at mostR, we obtain precise decay rates as$$R\rightarrow \infty $$ for the difference in angle between two almost horizontal saddle connections.more » « less
An official website of the United States government

