South America, from southernmost Bolivia through central Argentina, contains a useful Late Miocene to Holocene record of eolian sedimentation that can be used to advance our understanding of atmospheric circulation and dust production pathways over that interval. Our research indicates that loess provinces in the eastern Andes, Chaco Plains, and Pampean Plains had quasi-independent dust production pathways. A summary of our findings is as follows. 1) Detrital zircon crystals in the high-elevation upper Pleistocene loess deposits in the eastern Andes area of Tafí del Valle were primarily derived from the Puna Plateau to the west. At a latitude of ~27° S, this necessitates a several-degree equatorward shift in the upper- and lower-level westerlies during intervals with high dust accumulation in Tafí del Valle. 2) Upper Pleistocene to Holocene eolian sand deposits of the Pampean Sand Sea and loessic strata in the central and eastern Pampas contain detrital zircon U-Pb age spectra indicating derivation from the Río Desaguadero, Río Colorado, and Río Negro which drain the central Andes. Although the present-day Puna-Altiplano Plateau is hyperarid, the presence of major Argentine river systems in the dust production pathways of the Pampas is important for identifying the relative importance of precipitation and river courses on dust production, which parallels the relationship between the Yellow River and Chinese Loess Plateau in East Asia. 3) Upper Miocene strata of the Cerro Azul Formation, deposited between ~8.9 and ~5.5 Ma, include loess and aggradational paleosols. These eolian strata yield detrital zircon U-Pb age spectra that are consistent with the present-day Río Colorado and Río Negro, and similar to the Upper Pleistocene to Holocene deposits of the Pampas. This suggests a Late Miocene establishment of the Pampean eolian system. Interestingly, the Pampean eolian system and Chinese Loess Plateau both cover the same latitudes (~33°-39°) but in different hemispheres, and both were established at roughly the same time during the Late Miocene. These observations point to bihemispheric intensification of Hadley circulation in forcing the establishment of these two large eolian provinces.
more »
« less
A westerly dominated Early Cretaceous eolian system in the Hami Basin, NW China
Cretaceous eolian deposits provide evidence of variations in the tropical-subtropical atmospheric circulation under greenhouse conditions. However, the misinterpretation of many such deposits as fluvial or deltaic originally hindered precise paleoclimatic reconstructions. Here we report a newly identified Early Cretaceous desert in the Hami Basin, China, which helps understand spatial-temporal variations in aridity and atmospheric circulations within central East Asia during the Early Cretaceous. The Liushuquan Formation is composed of >300-m-thick eolian deposits interpreted as an intermontane erg environment. Paleocurrent indicators within the straight-crested dunes of the Liushuquan Formation yield a mean trend of 101.3° (± 10.1°, 1 standard deviation) throughout the formation, consistent with near-surface westerly winds. Paleo-atmospheric circulation superimposed on topographic effects led to widespread eolianite accumulation during the Early Cretaceous. Combined with the spatiotemporal changes in desert distributions and prevailing surface wind patterns in East Asia, these observations are consistent with the migration of the subtropical high-pressure belt during the Early Cretaceous. We propose the following paleo-atmospheric model: (1) During the late Berriasian−Valanginian, the subtropical high belt drifted southward and northward over shorter time scales within the spatial domain of the paleo-Ordos Basin, then shifted southward at least past the Ordos Basin; (2) until the late Hauterivian−Barremian, the subtropical high-pressure zone was primarily located between the northwestern Tarim Basin and the Ordos Basin; and (3) a significant southward shift of the subtropical high-pressure zone occurred during the Aptian−Albian.
more »
« less
- Award ID(s):
- 2126500
- PAR ID:
- 10557309
- Publisher / Repository:
- GSA
- Date Published:
- Journal Name:
- Geological Society of America Bulletin
- ISSN:
- 0016-7606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Manantiales basin contains >4 km of nonmarine sedimentary strata that accumulated at 31.75–32.5°S during construction of the High Andes. We report field and analytical data from the underexplored northern portion of this basin. The basin contains upper Eocene–middle Miocene strata that accumulated in back‐bulge or distal foredeep through inner‐wedge‐top depozones of the Andean foreland basin as it migrated through this region. A revised accumulation history for the basin‐filling Río de los Patos and Chinches Formations supports a regional pattern of flexure in front of an east‐vergent orogenic wedge. The former formation consists of eolian and localized fluviolacustrine deposits which accumulated between ca. 38 Ma and ≤34 Ma during thrust belt development in Chile. A subsequent ≤12 Myr hiatus may reflect passage of the flexural forebulge or cessation of subsidence during orogenic quiescence. The overlying Chinches Formation records a transition from the foredeep to wedge‐top depozones. Foredeep deposits of east‐flowing, meandering streams were incised prior to ca. 18 Ma, after which deposits of axial rivers, playas, and perennial lakes ponded in a depression behind orogenic topography to the east. After ca. 15 Ma, alluvial‐fan deposits were syndepositionally deformed adjacent to growing thrust‐belt structures along the western basin margin. Although the basin record supports a westward step in the locus of deformation during Early–Middle Miocene time, it conflicts with models involving west‐vergence of the orogenic wedge. Rather, this pattern can be explained as out‐of‐sequence deformation alternating with wedge forward propagation, consistent with Coulomb wedge models incorporating syntectonic sedimentation.more » « less
-
Abstract Atmospheric river (AR) and its impact on monsoon rainfall in East Asia are investigated by considering their month‐to‐month variations during the East Asian summer monsoon (EASM). The AR in the EASM, defined as an anomalously enhanced plume‐like water vapor transport, frequently forms over eastern China, Korea and western Japan. However, its characteristics vary from the early (June‐July) to the late (August‐September) period of the EASM. In the early EASM, AR is typically characterized by a quasi‐stationary monsoon southwesterly along the northern boundary of the western North Pacific subtropical high (WNPSH), which is further intensified by a migrating extratropical cyclone in the north. In contrast, the late‐EASM AR, which is less frequent than the early EASM AR, is primarily organized by a migrating extratropical cyclone. The quasi‐stationary monsoon southwesterly is less influential as the northern boundary of the WNPSH shifts northward, being decoupled from the subtropical ocean. Both the early‐ and late‐EASM ARs contribute substantially to monsoon rainfall, especially to heavy rainfall events. In the early EASM, 35%–70% of total rainfall amount and 60%–80% of heavy rainfall events in eastern China, Korea and western Japan are associated with AR. Although weakened, AR‐related rainfall is still significant in the late EASM in Korea and western Japan. These results indicate that AR is a key ingredient of EASM precipitation and its subseasonal variations should be taken into account to better understand and predict AR‐related extreme precipitation in East Asia.more » « less
-
Abstract The tectonic history of the Philippine Sea plate is an essential piece in understanding the tectonic evolution of Southeast Asia, but it is still unclear and controversial. We present the first geochemical data obtained from lavas from the Gagua Ridge (GR) within the Philippine Sea. The GR lavas exhibit geochemical signatures typical of subduction-related arc magmatism. Plagioclase Ar-Ar ages of ca. 124–123 Ma and subduction-related geochemical signatures support the formation of GR lavas in the vicinity of an arc during the Early Cretaceous induced by subduction of the oceanic plate along East Asia. The ages of trapped zircon xenocrysts within the GR lavas cluster at 250 Ma, 0.75 Ga, and 2.45 Ga and match well the ages of zircons recovered from the Cathaysian block, southern China. Our results imply that the GR basement is partially composed of continental material that rifted away from the Eurasian margin during opening and spreading of the Huatung Basin. The depleted mantle wedge-derived magmas evolved and picked up the continental zircons during ascent. The youngest zircon ages and the GR lava Ar-Ar ages (ca. 124–123 Ma) presented in this study newly constrain an Early Cretaceous age for the Huatung Basin. Our study provides further evidence that the Huatung Basin is a remnant of a Mesozoic-aged ocean basin that dispersed from southern China during the Cretaceous. Transport of continental slivers by growth and closure of marginal seas along the East Asia margin may have been more prevalent than previously recognized.more » « less
-
null (Ed.)Abstract Terrane accretion forms lithospheric-scale fault systems that commonly experience long and complex slip histories. Unraveling the evolution of these suture zone fault systems yields valuable information regarding the relative importance of various upper crustal structures and their linkage through the lithosphere. We present new bedrock geologic mapping and geochronology data documenting the geologic evolution of reactivated shortening structures and adjacent metamorphic rocks in the Alaska Range suture zone at the inboard margin of the Wrangellia composite terrane in the eastern Alaska Range, Alaska, USA. Detrital zircon uranium-lead (U-Pb) age spectra from metamorphic rocks in our study area reveal two distinct metasedimentary belts. The Maclaren schist occupies the inboard (northern) belt, which was derived from terranes along the western margin of North America during the mid- to Late Cretaceous. In contrast, the Clearwater metasediments occupy the outboard (southern) belt, which was derived from arcs built on the Wrangellia composite terrane during the Late Jurassic to Early Cretaceous. A newly discovered locality of Alaska-type zoned ultramafic bodies within the Clearwater metasediments provides an additional link to the Wrangellia composite terrane. The Maclaren and Clearwater metasedimentary belts are presently juxtaposed by the newly identified Valdez Creek fault, which is an upper crustal reactivation of the Valdez Creek shear zone, the Late Cretaceous plate boundary that initially brought them together. 40Ar/39Ar mica ages reveal independent post-collisional thermal histories of hanging wall and footwall rocks until reactivation localized on the Valdez Creek fault after ca. 32 Ma. Slip on the Valdez Creek fault expanded into a thrust system that progressed southward to the Broxson Gulch fault at the southern margin of the suture zone and eventually into the Wrangellia terrane. Detrital zircon U-Pb age spectra and clast assemblages from fault-bounded Cenozoic gravel deposits indicate that the thrust system was active during the Oligocene and into the Pliocene, likely as a far-field result of ongoing flat-slab subduction and accretion of the Yakutat microplate. The Valdez Creek fault was the primary reactivated structure in the suture zone, likely due to its linkage with the reactivated boundary zone between the Wrangellia composite terrane and North America in the lithospheric mantle.more » « less
An official website of the United States government

