The purpose of this paper is to develop a practical strategy to accelerate Newton’s method in the vicinity of singular points. We present an adaptive safeguarding scheme with a tunable parameter, which we call adaptive γ-safeguarding, that one can use in tandem with Anderson acceleration to improve the performance of Newton’s method when solving problems at or near singular points. The key features of adaptive γ-safeguarding are that it converges locally for singular problems, and it can detect nonsingular problems automatically, in which case the Newton-Anderson iterates are scaled towards a standard Newton step. The result is a flexible algorithm that performs well for singular and nonsingular problems, and can recover convergence from both standard Newton and Newton-Anderson with the right parameter choice. This leads to faster local convergence compared to both Newton’s method, and Newton-Anderson without safeguarding, with effectively no additional computational cost. We demonstrate three strategies one can use when implementing Newton-Anderson and γ-safeguarded Newton-Anderson to solve parameter-dependent problems near singular points. For our benchmark problems, we take two parameter-dependent incompressible flow systems: flow in a channel and Rayleigh-Benard convection.
more »
« less
Newton-Anderson at Singular Points
In this paper we develop convergence and acceleration theory for Anderson acceleration applied to Newton’s method for nonlinear systems in which the Jacobian is singular at a solution. For these problems, the standard Newton algorithm converges linearly in a region about the solution; and, it has been previously observed that Anderson acceleration can substantially improve convergence without additional a priori knowledge, and with little additional computation cost. We present an analysis of the Newton-Anderson algorithm in this context, and introduce a novel and theoretically supported safeguarding strategy. The convergence results are demonstrated with the Chandrasekhar H-equation and a variety of benchmark examples.
more »
« less
- Award ID(s):
- 2011519
- PAR ID:
- 10557310
- Publisher / Repository:
- International Journal of Numerical Analysis and Modeling
- Date Published:
- Journal Name:
- International Journal of Numerical Analysis and Modeling
- Volume:
- 20
- Issue:
- 5
- ISSN:
- 1705-5105
- Page Range / eLocation ID:
- 667 to 692
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This paper develops an efficient and robust solution technique for the steady Boussinesq model of non-isothermal flow using Anderson acceleration applied to a Picard iteration. After analyzing the fixed point operator associated with the nonlinear iteration to prove that certain stability and regularity properties hold, we apply the authors’ recently constructed theory for Anderson acceleration, which yields a convergence result for the Anderson accelerated Picard iteration for the Boussinesq system. The result shows that the leading term in the residual is improved by the gain in the optimization problem, but at the cost of additional higher order terms that can be significant when the residual is large. We perform numerical tests that illustrate the theory, and show that a 2-stage choice of Anderson depth can be advantageous. We also consider Anderson acceleration applied to the Newton iteration for the Boussinesq equations, and observe that the acceleration allows the Newton iteration to converge for significantly higher Rayleigh numbers that it could without acceleration, even with a standard line search.more » « less
-
Abstract We analyze and test a simple-to-implement two-step iteration for the incompressible Navier-Stokes equations that consists of first applying the Picard iteration and then applying the Newton iteration to the Picard output. We prove that this composition of Picard and Newton converges quadratically, and our analysis (which covers both the unique solution and non-unique solution cases) also suggests that this solver has a larger convergence basin than usual Newton because of the improved stability properties of Picard-Newton over Newton. Numerical tests show that Picard-Newton converges more reliably for higher Reynolds numbers and worse initial conditions than Picard and Newton iterations. We also consider enhancing the Picard step with Anderson acceleration (AA), and find that the AAPicard-Newton iteration has even better convergence properties on several benchmark test problems.more » « less
-
This paper develops a new class of nonlinear acceleration algorithms based on extending conjugate residual-type procedures from linear to nonlinear equations. The main algorithm has strong similarities with Anderson acceleration as well as with inexact Newton methods—depending on which variant is implemented. We prove theoretically and verify experimentally, on a variety of problems from simulation experiments to deep learning applications, that our method is a powerful accelerated iterative algorithm. The code is available at https://github.com/Data-driven-numerical-methods/Nonlinear-Truncated-Conjugate-Residual.more » « less
-
Abstract This paper examines a number of extrapolation and acceleration methods and introduces a few modifications of the standard Shanks transformation that deal with general sequences. One of the goals of the paper is to lay out a general framework that encompasses most of the known acceleration strategies. The paper also considers the Anderson Acceleration (AA) method under a new light and exploits a connection with quasi-Newton methods in order to establish local linear convergence results of a stabilized version of the AA method. The methods are tested on a number of problems, including a few that arise from nonlinear partial differential equations.more » « less
An official website of the United States government

