Abstract Floods cause hundreds of fatalities and billions of dollars of economic loss each year in the United States. To mitigate these damages, accurate flood prediction is needed for issuing early warnings to the public. This situation is exacerbated in larger model domains flood prediction, particularly in ungauged basins. To improve flood prediction for both gauged and ungauged basins, we propose a spatio‐temporal hierarchical model (STHM) using above‐normal flow estimation with a 10‐day window of modeled National Water Model (NWM) streamflow and a variety of catchment characteristics as input. The STHM is calibrated (1993–2008) and validated (2009–2018) in controlled, natural, and coastal basins over three broad groups, and shows significant improvement for the first two basin types. A seasonal analysis shows the most influential predictors beyond NWM streamflow reanalysis are the previous 3‐day average streamflow and the aridity index for controlled and natural basins, respectively. To evaluate the STHM in improving above‐normal streamflow in ungauged basins, 20‐fold cross‐validation is performed by leaving 5% of sites. Results show that the STHM increases predictive skill in over 50% of sites' by 0.1 Nash‐Sutcliffe efficiency (NSE) and improves over 65% of sites' streamflow prediction to an NSE > 0.67, which demonstrates that the STHM is one of the first of its kind and could be employed for flood prediction in both gauged and ungauged basins.
more »
« less
Leveraging synthetic aperture radar (SAR) with the National Water Model (NWM) to improve above-normal flow prediction in ungauged basins
Abstract Effective flood prediction supports developing proactive risk management strategies, but its application in ungauged basins faces tremendous challenges due to limited/no streamflow record. This study investigates the potential for integrating streamflow derived from synthetic aperture radar (SAR) data and U.S. National Water Model (NWM) reanalysis estimates to develop improved predictions of above-normal flow (ANF) over the coterminous US. Leveraging the SAR data from the Global Flood Detection System to estimate the antecedent conditions using principal component regression, we apply the spatial-temporal hierarchical model (STHM) using NWM outputs for improving ANF prediction. Our evaluation shows promising results with the integrated model, STHM-SAR, significantly improving NWE, especially in 60% of the sites in the coastal region. Spatial and temporal validations underscore the model’s robustness, with SAR data contributing to explained variance by 24% on average. This approach not only improves NWM prediction, but also uniquely combines existing remote sensing data with national-scale predictions, showcasing its potential to improve hydrological modeling, particularly in regions with limited stream gauges.
more »
« less
- Award ID(s):
- 2151651
- PAR ID:
- 10557683
- Publisher / Repository:
- Environmental Research Letters
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 19
- Issue:
- 12
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- 124002
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Large-scale hydrologic models are increasingly being developed for operational use in the forecasting and planning of water resources. However, the predictive strength of such models depends on how well they resolve various functions of catchment hydrology, which are influenced by gradients in climate, topography, soils, and land use. Most assessments of hydrologic model uncertainty have been limited to traditional statistical methods. Here, we present a proof-of-concept approach that uses interpretable machine learning techniques to provide post hoc assessment of model sensitivity and process deficiency in hydrologic models. We train a random forest model to predict the Kling–Gupta efficiency (KGE) of National Water Model (NWM) and National Hydrologic Model (NHM) streamflow predictions for 4383 stream gauges in the conterminous United States. Thereafter, we explain the local and global controls that 48 catchment attributes exert on KGE prediction using interpretable Shapley values. Overall, we find that soil water content is the most impactful feature controlling successful model performance, suggesting that soil water storage is difficult for hydrologic models to resolve, particularly for arid locations. We identify nonlinear thresholds beyond which predictive performance decreases for NWM and NHM. For example, soil water content less than 210 mm, precipitation less than 900 mm yr−1, road density greater than 5 km km−2, and lake area percent greater than 10 % contributed to lower KGE values. These results suggest that improvements in how these influential processes are represented could result in the largest increases in NWM and NHM predictive performance. This study demonstrates the utility of interrogating process-based models using data-driven techniques, which has broad applicability and potential for improving the next generation of large-scale hydrologic models.more » « less
-
Abstract Streamflow forecasting at a subseasonal time scale (10–30 days into the future) is important for various human activities. The ensemble streamflow prediction (ESP) is a widely applied technique for subseasonal streamflow forecasting. However, ESP’s reliance on the randomly resampled historical precipitation limits its predictive capability. Available dynamical subseasonal precipitation forecasts provide an alternative to the randomly resampled precipitation in ESP. Prior studies found the predictive performance of raw subseasonal precipitation forecast is limited in many regions such as the central south of the United States, which raises questions about its effectiveness in assisting streamflow forecasting. To further assess the hydrologic applicability of dynamical subseasonal precipitation forecasts, we test the subseasonal precipitation forecast from North America Multi-Model Ensemble Phase II (NMME-2) at four watersheds in the central south region of the United States. The subseasonal precipitation forecasts are postprocessed with bias correction and spatial disaggregation (BCSD) to correct bias and improve spatial resolution before replacing the randomly resampled precipitation in ESP for streamflow predictions. The performance of the resulting streamflow predictions is benchmarked with ESP. Evaluation is conducted using Kling–Gupta Efficiency (KGE), continuous ranked probability score (CRPS), probability of detection (POD), false alarm ratios (FARs), as well as reliability diagrams. Our results suggest that BCSD-corrected subseasonal precipitation forecasts lead to overall improved streamflow predictions due to added skills in winter and spring. Our results also suggest that BCSD-corrected subseasonal precipitation forecasts lead to improved predictions on the occurrence of high-percentile streamflow values above 75%. Overall, BCSD-corrected subseasonal precipitation has shown promising performance, highlighting its potential broader applications for river and flood forecasting.more » « less
-
null (Ed.)This paper proposes a two-stage stochastic mixed integer programming framework for patient evacuation. While minimizing the expected total cost of patient evacuation operations, the model determines the location of staging areas and the number of emergency medical service (EMS) vehicles to mobilize in the first stage, and the EMS vehicle routing assignments in the second stage. A real-world data from Southeast Texas region is used to demonstrate our modeling approach. To provide a more pragmatic solution to the patient evacuation problem, we attempt to create comprehensive hurricane instances by integrating the publicly available state-of-art hydrology models for surge, Sea, Lake Ocean and Overland Surge for Hurricanes (SLOSH), and for streamflow, National Water Model (NWM), prediction. The surge product captures potential flooding in coastal region while the streamflow product predicts inland flooding. The results exhibit the importance of the integrated approach in patient evacuation planning, provide guidance on flood mapping and prove the potential benefit of comprehensive approach in scenario generation.more » « less
-
Abstract Hurricanes have been the most destructive and expensive hydrometeorological event in U.S. history, causing catastrophic winds and floods. Hurricane dynamics can significantly impact the amount and spatial extent of storm precipitation. However, the complex interactions of hurricane intensity and precipitation and the impacts of improving hurricane dynamics on streamflow forecasts are not well established yet. This paper addresses these gaps by comprehensively characterizing the role of vertical diffusion in improving hurricane intensity and streamflow forecasts under different planetary boundary layer, microphysics, and cumulus parameterizations. To this end, the Weather Research and Forecasting (WRF) atmospheric model is coupled with the WRF hydrological (WRF-Hydro) model to simulate four major hurricanes landfalling in three hurricane-prone regions in the United States. First, a stepwise calibration is carried out in WRF-Hydro, which remarkably reduces streamflow forecast errors compared to the U.S. Geological Survey (USGS) gauges. Then, 60 coupled hydrometeorological simulations were conducted to evaluate the performance of current weather parameterizations. All schemes were shown to underestimate the observed intensity of the considered major hurricanes since their diffusion is overdissipative for hurricane flow simulations. By reducing the vertical diffusion, hurricane intensity forecasts were improved by ∼39.5% on average compared to the default models. These intensified hurricanes generated more intense and localized precipitation forcing. This enhancement in intensity led to ∼16% and ∼34% improvements in hurricane streamflow bias and correlation forecasts, respectively. The research underscores the role of improved hurricane dynamics in enhancing flood predictions and provides new insights into the impacts of vertical diffusion on hurricane intensity and streamflow forecasts. Significance StatementDespite significant recent improvements, numerical weather prediction models struggle to accurately forecast hurricane intensity and track due to many reasons such as inaccurate physical parameterization for hurricane flows. Furthermore, the performance of existing physics schemes is not well studied for hurricane flood forecasting. This study bridges these knowledge gaps by extensively evaluating different physical parameterizations for hurricane track, intensity, and flood forecasts using an atmospheric model coupled with a hydrological model. Then, a reduced diffusion boundary layer scheme is developed, making remarkable improvements in hurricane intensity forecasts due to the overdissipative nature of the considered schemes for major hurricane simulations. This reduced diffusion model is shown to significantly enhance hurricane flood forecasts, indicating the significance of hurricane dynamics on its induced precipitation.more » « less
An official website of the United States government

