Abstract Effective flood prediction supports developing proactive risk management strategies, but its application in ungauged basins faces tremendous challenges due to limited/no streamflow record. This study investigates the potential for integrating streamflow derived from synthetic aperture radar (SAR) data and U.S. National Water Model (NWM) reanalysis estimates to develop improved predictions of above-normal flow (ANF) over the coterminous US. Leveraging the SAR data from the Global Flood Detection System to estimate the antecedent conditions using principal component regression, we apply the spatial-temporal hierarchical model (STHM) using NWM outputs for improving ANF prediction. Our evaluation shows promising results with the integrated model, STHM-SAR, significantly improving NWE, especially in 60% of the sites in the coastal region. Spatial and temporal validations underscore the model’s robustness, with SAR data contributing to explained variance by 24% on average. This approach not only improves NWM prediction, but also uniquely combines existing remote sensing data with national-scale predictions, showcasing its potential to improve hydrological modeling, particularly in regions with limited stream gauges.
more »
« less
Improved National‐Scale Above‐Normal Flow Prediction for Gauged and Ungauged Basins Using a Spatio‐Temporal Hierarchical Model
Abstract Floods cause hundreds of fatalities and billions of dollars of economic loss each year in the United States. To mitigate these damages, accurate flood prediction is needed for issuing early warnings to the public. This situation is exacerbated in larger model domains flood prediction, particularly in ungauged basins. To improve flood prediction for both gauged and ungauged basins, we propose a spatio‐temporal hierarchical model (STHM) using above‐normal flow estimation with a 10‐day window of modeled National Water Model (NWM) streamflow and a variety of catchment characteristics as input. The STHM is calibrated (1993–2008) and validated (2009–2018) in controlled, natural, and coastal basins over three broad groups, and shows significant improvement for the first two basin types. A seasonal analysis shows the most influential predictors beyond NWM streamflow reanalysis are the previous 3‐day average streamflow and the aridity index for controlled and natural basins, respectively. To evaluate the STHM in improving above‐normal streamflow in ungauged basins, 20‐fold cross‐validation is performed by leaving 5% of sites. Results show that the STHM increases predictive skill in over 50% of sites' by 0.1 Nash‐Sutcliffe efficiency (NSE) and improves over 65% of sites' streamflow prediction to an NSE > 0.67, which demonstrates that the STHM is one of the first of its kind and could be employed for flood prediction in both gauged and ungauged basins.
more »
« less
- Award ID(s):
- 2033607
- PAR ID:
- 10571931
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 60
- Issue:
- 1
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Accurate streamflow prediction is critical for ensuring water supply and detecting floods, while also providing essential hydrological inputs for other scientific models in fields such as climate and agriculture.Recently, deep learning models have been shown to achieve state-of-the-art regionalization performance by building a global hydrologic model. These models predict streamflow given catchment physical characteristics and weather forcing data.However, these models are only focused on gauged basins and cannot adapt to ungaugaed basins, i.e., basins without training data. Prediction in Ungauged Basins (PUB) is considered one of the most important challenges in hydrology, as most basins in the United States and around the world have no observations. In this work, we propose a meta-transfer learning approach by enhancing imperfect physics equations that facilitate model adaptation. Intuitively, physical equations can often be used to regularize deep learning models to achieve robust regionalization performance under gauged scenarios, but they can be inaccurate due to the simplified representation of physics. We correct such uncertainty in physical equation by residual approximation and let these corrected equations guide the model training process. We evaluated the proposed method for predicting daily streamflow on the catchment attributes and meteorology for large-sample studies (CAMELS) dataset. The experiment results on hydrological data over 19 years demonstrate the effectiveness of the proposed method in ungauged scenarios.more » « less
-
Abstract The Ensemble Streamflow Prediction (ESP) framework combines a probabilistic forecast structure with process‐based models for water supply predictions. However, process‐based models require computationally intensive parameter estimation, increasing uncertainties and limiting usability. Motivated by the strong performance of deep learning models, we seek to assess whether the Long Short‐Term Memory (LSTM) model can provide skillful forecasts and replace process‐based models within the ESP framework. Given challenges inimplicitlycapturing snowpack dynamics within LSTMs for streamflow prediction, we also evaluated the added skill ofexplicitlyincorporating snowpack information to improve hydrologic memory representation. LSTM‐ESPs were evaluated under four different scenarios: one excluding snow and three including snow with varied snowpack representations. The LSTM models were trained using information from 664 GAGES‐II basins during WY1983–2000. During a testing period, WY2001–2010, 80% of basins exhibited Nash‐Sutcliffe Efficiency (NSE) above 0.5 with a median NSE of around 0.70, indicating satisfactory utility in simulating seasonal water supply. LSTM‐ESP forecasts were then tested during WY2011–2020 over 76 western US basins with operational Natural Resources Conservation Services (NRCS) forecasts. A key finding is that in high snow regions, LSTM‐ESP forecasts using simplified ablation assumptions performed worse than those excluding snow, highlighting that snow data do not consistently improve LSTM‐ESP performance. However, LSTM‐ESP forecasts that explicitly incorporated past years' snow accumulation and ablation performed comparably to NRCS forecasts and better than forecasts excluding snow entirely. Overall, integrating deep learning within an ESP framework shows promise and highlights important considerations for including snowpack information in forecasting.more » « less
-
Abstract Recent advances in remote sensing and the upcoming launch of the joint NASA/CNES/CSA/UKSA Surface Water and Ocean Topography (SWOT) satellite point toward improved river discharge estimates in ungauged basins. Existing discharge methods rely on “prior river knowledge” to infer parameters not directly measured from space. Here, we show that discharge estimation is improved by classifying and parameterizing rivers based on their unique geomorphology and hydraulics. Using over 370,000 in situ hydraulic observations as training data, we test unsupervised learning and an “expert” method to assign these hydraulics and geomorphology to rivers via remote sensing. This intervention, along with updates to model physics, constitutes a new method we term “geoBAM,” an update of the Bayesian At‐many‐stations hydraulic geometry‐Manning's (BAM) algorithm. We tested geoBAM on Landsat imagery over more than 7,500 rivers (108 are gauged) in Canada's Mackenzie River basin and on simulated hydraulic data for 19 rivers that mimic SWOT observations without measurement error. geoBAM yielded considerable improvement over BAM, improving the median Nash‐Sutcliffe efficiency (NSE) for the Mackenzie River from −0.05 to 0.26 and from 0.16 to 0.46 for the SWOT rivers. Further, NSE improved by at least 0.10 in 78/108 gauged Mackenzie rivers and 8/19 SWOT rivers. We attribute geoBAM improvement to parameterizing rivers by type rather than globally, but prediction accuracy worsens if parameters are misassigned. This method is easily mapped to rivers at the global scale and paves the way for improving future discharge estimates, especially when coupled with hydrologic models.more » « less
-
null (Ed.)Precipitation occurs in two basic forms defined as liquid state and solid state. Different from rain-fed watershed, modeling snow processes is of vital importance in snow-dominated watersheds. The seasonal snowpack is a natural water reservoir, which stores snow water in winter and releases it in spring and summer. The warmer climate in recent decades has led to earlier snowmelt, a decline in snowpack, and change in the seasonality of river flows. The Soil and Water Assessment Tool (SWAT) could be applied in the snow-influenced watershed because of its ability to simultaneously predict the streamflow generated from rainfall and from the melting of snow. The choice of parameters, reference data, and calibration strategy could significantly affect the SWAT model calibration outcome and further affect the prediction accuracy. In this study, SWAT models are implemented in four upland watersheds in the Tulare Lake Basin (TLB) located across the Southern Sierra Nevada Mountains. Three calibration scenarios considering different calibration parameters and reference datasets are applied to investigate the impact of the Parallel Energy Balance Model (ParBal) snow reconstruction data and snow parameters on the streamflow and snow water-equivalent (SWE) prediction accuracy. In addition, the watershed parameters and lapse rate parameters-led equifinality is also evaluated. The results indicate that calibration of the SWAT model with respect to both streamflow and SWE reference data could improve the model SWE prediction reliability in general. Comparatively, the streamflow predictions are not significantly affected by differently lumped calibration schemes. The default snow parameter values capture the extreme high flows better than the other two calibration scenarios, whereas there is no remarkable difference among the three calibration schemes for capturing the extreme low flows. The watershed and lapse rate parameters-induced equifinality affects the flow prediction more (Nash-Sutcliffe Efficiency (NSE) varies between 0.2–0.3) than the SWE prediction (NSE varies less than 0.1). This study points out the remote-sensing-based SWE reconstruction product as a promising alternative choice for model calibration in ungauged snow-influenced watersheds. The streamflow-reconstructed SWE bi-objective calibrated model could improve the prediction reliability of surface water supply change for the downstream agricultural region under the changing climate.more » « less
An official website of the United States government

