skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Control of work functions of nanophotonic components
Work function is an essential material’s property playing important roles in electronics, photovoltaics, and more recently, in nanophotonics. We have studied e昀 ects of organic, and inorganic dielectric materials on work functions of Au 昀 lms in single layered, and multilayered structures. We found that measured work function of metallic surfaces can be a昀 ected by dielectric materials situated 10–100 nm away from the metallic surface. We have found that, (i) the glass underneath ~ 50 nm gold slab reduces the work function of gold, (ii) Rh590:PMMA increases the work function of a gold 昀 lm deposited on top of the polymer, and (iii) reduces it if Rh590:PMMA is deposited on top of Au. (iv) With increase of the Rh590 concentration in PMMA, n, the work function 昀 rst decreases (at n < 64 g/l), and then increases (at n > 64 g/l). (v) The work function of a Fabry–Perot cavity or an MIM waveguide is almost the same as that of single Au 昀 lms of comparable thickness. The experimental results can be qualitatively explained in terms of a simple model taking into account adhesion of charged molecules to a metallic surface, and formation of a double layer of charges accelerating or decelerating electrons exiting the metal and decreasing or increasing the work function.  more » « less
Award ID(s):
1856515 2301350 2112595
PAR ID:
10557695
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Springer
Date Published:
Journal Name:
Scientific Reports
Volume:
14
Issue:
1
ISSN:
2045-2322
Subject(s) / Keyword(s):
workfunction, nanophotonics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We have studied reflection spectra of dye-doped and undoped polymers deposited onto Ag and Au substrates and found anomalous dips in the UV spectral range. On top of Ag substrates, the λ ∼ 375 nm dips were observed in undoped PMMA, PVP, and PS polymers as well as PMMA doped with Rh590 and HITC laser dyes. In silver-based samples, the spectral positions of the observed reflection dips were close to singularities in the refractive indexes of surface plasmon polaritons (SPPs) propagating at the interface between Ag and polymer. The latter singularities can tentatively explain the λ ∼ 375 nm reflection dips, if the scattering of Ag and polymeric films is large enough to launch SPP without any prism or grating. The dips observed in reflection of Rh590:PMMA and HITC:PMMA on top of Au, were more pronounced than those on Ag, broader, shifted to shorter wavelengths, and their spectral positions had large standard deviations. Furthermore, no anomalous dips in gold-based samples were observed in the reflection spectra of undoped PMMA, PVP, and PS polymers, and a modest singularity in the SPP refractive index, predicted theoretically at λ ∼ 500 nm, cannot explain the dips in the UV reflection spectra observed experimentally. It appears likely that the origin of the reflection dips on top of Au substrates is different from that on top of Ag substrates. 
    more » « less
  2. Abstract Incorporation of metallic nanoparticles (NPs) in polymer matrix has been used to enhance and control dissolution and release of drugs, for targeted drug delivery, as antimicrobial agents, localized heat sources, and for unique optoelectronic applications. Gold NPs in particular exhibit a plasmonic response that has been utilized for photothermal energy conversion. Because plasmonic nanoparticles typically exhibit a plasmon resonance frequency similar to the visible light spectrum, they present as good candidates for direct photothermal conversion with enhanced solar thermal efficiency in these wavelengths. In our work, we have incorporated ∼3-nm-diameter colloidal gold (Au c ) NPs into electrospun polyethylene glycol (PEG) fibers to utilize the nanoparticle plasmonic response for localized heating and melting of the polymer to release medical treatment. Au c and Au c in PEG (PEG+Au c ) both exhibited a minimum reflectivity at 522 nm or approximately green wavelengths of light under ultraviolet-visible (UV-Vis) spectroscopy. PEG+Au c ES fibers revealed a blue shift in minimum reflectivity at 504 nm. UV-Vis spectra were used to calculate the theoretical efficiency enhancement of PEG+Au c versus PEG alone, finding an approximate increase of 10 % under broad spectrum white light interrogation, and ∼14 % when illuminated with green light. Au c enhanced polymers were ES directly onto resistance temperature detectors and interrogated with green laser light so that temperature change could be recorded. Results showed a maximum increase of 8.9 °C. To further understand how gold nanomaterials effect the complex optical properties of our materials, spectroscopic ellipsometry was used. Using spectroscopic ellipsometry and modeling with CompleteEASE® software, the complex optical constants of our materials were determined. The complex optical constant n (index of refraction) provided us with optical density properties related to light wavelength divided by velocity, and k (extinction coefficient) was used to show the absorptive properties of the materials. 
    more » « less
  3. Abstract We have studied effects of metal–dielectric substrates on photopolymerization of [2,2ʹ-Bi-1H-indene]-1,1ʹ-dione-3,3ʹ-diyl diheptanoate (BITh) monomer. We synthetized BITh and spin-coated it onto a variety of dielectric, metallic, and metal–dielectric substrates. The films were exposed to radiation of a UV–Visible Xe lamp, causing photo-polymerization of monomer molecules. The magnitude and the rate of the photo-polymerization were monitored by measuring the strength of the ~ 480 nm absorption band, which existed in the monomer but not in the polymer. Expectedly, the rate of photo-polymerization changed nearly linearly with the change of the pumping intensity. In contrast with our early study of photo-degradation of semiconducting polymer P3HT, the rate of photo-polymerization of BITh is getting modestly higher if the monomer film is deposited on top of silver separated from the monomer by a thin insulating MgF 2 layer preventing a charge transfer. This effect is partly due to a constructive interference of the incident and reflected light waves, as well as known in the literature effects of metal/dielectric substrates on a variety of spectroscopic and energy transfer parameters. At the same time, the rate of photopolymerization is getting threefold larger if monomer is deposited on Ag film directly and charge transfer is allowed. Finally, Au substrates cause modest (~ 50%) enhancement of both monomer film absorption and the rate of photo-polymerization. 
    more » « less
  4. Abstract With the recent establishment of atomically precise nanochemistry, capabilities toward programmable control over the nanoparticle size and structure are being developed. Advances in the synthesis of atomically precise nanoclusters (NCs, 1–3 nm) have been made in recent years, and more importantly, their total structures (core plus ligands) have been mapped out by X‐ray crystallography. These ultrasmall Au nanoparticles exhibit strong quantum‐confinement effect, manifested in their optical absorption properties. With the advantage of atomic precision, gold‐thiolate nanoclusters (Aun(SR)m) are revealed to contain an inner kernel, Au–S interface (motifs), and surface ligand (‐R) shell. Programming the atomic packing into various crystallographic structures of the metal kernel can be achieved, which plays a significant role in determining the optical properties and the energy gap (Eg) of NCs. When the size increases, a general trend is observed for NCs with fcc or decahedral kernels, whereas those NCs with icosahedral kernels deviate from the general trend by showing comparably smallerEg. Comparisons are also made to further demonstrate the more decisive role of the kernel structure over surface motifs based on isomeric Au NCs and NC series with evolving kernel or motif structures. Finally, future perspectives are discussed. 
    more » « less
  5. The transition from the discrete, excitonic state to the continuous, metallic state in thiolate-protected gold nanoclusters is of fundamental interest and has attracted significant efforts in recent research. Compared with optical and electronic transition behavior, the transition in magnetism from the atomic gold paramagnetism (Au 6s 1 ) to the band behavior is less studied. In this work, the magnetic properties of 1.7 nm [Au 133 (TBBT) 52 ] 0 nanoclusters (where TBBT = 4- tert -butylbenzenethiolate) with 81 nominal “valence electrons” are investigated by electron paramagnetic resonance (EPR) spectroscopy. Quantitative EPR analysis shows that each cluster possesses one unpaired electron (spin), indicating that the electrons fill into discrete orbitals instead of a continuous band, for that one electron in the band would give a much smaller magnetic moment. Therefore, [Au 133 (TBBT) 52 ] 0 possesses a nonmetallic electronic structure. Furthermore, we demonstrate that the unpaired spin can be removed by oxidizing [Au 133 (TBBT) 52 ] 0 to [Au 133 (TBBT) 52 ] + and the nanocluster transforms from paramagnetism to diamagnetism accordingly. The UV-vis absorption spectra remain the same in the process of single-electron loss or addition. Nuclear magnetic resonance (NMR) is applied to probe the charge and magnetic states of Au 133 (TBBT) 52 , and the chemical shifts of 52 surface TBBT ligands are found to be affected by the spin in the gold core. The NMR spectrum of Au 133 (TBBT) 52 shows a 13-fold splitting with 4-fold degeneracy of 52 TBBT ligands, which are correlated to the quasi- D 2 symmetry of the ligand shell. Overall, this work provides important insights into the electronic structure of Au 133 (TBBT) 52 by combining EPR, optical and NMR studies, which will pave the way for further understanding of the transition behavior in metal nanoclusters. 
    more » « less