skip to main content


Search for: All records

Award ID contains: 2112595

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Methods to probe and understand the dynamic response of materials following impulsive excitation are important for many fields, from materials and energy sciences to chemical and neuroscience. To design more efficient nano, energy, and quantum devices, new methods are needed to uncover the dominant excitations and reaction pathways. In this work, we implement a newly-developed superlet transform—a super-resolution time-frequency analytical method—to analyze and extract phonon dynamics in a laser-excited two-dimensional (2D) quantum material. This quasi-2D system, 1T-TaSe2, supports both equilibrium and metastable light-induced charge density wave (CDW) phases mediated by strongly coupled phonons. We compare the effectiveness of the superlet transform to standard time-frequency techniques. We find that the superlet transform is superior in both time and frequency resolution, and use it to observe and validate novel physics. In particular, we show fluence-dependent changes in the coupled dynamics of three phonon modes that are similar in frequency, including the CDW amplitude mode, that clearly demonstrate a change in the dominant charge-phonon couplings. More interestingly, the frequencies of the three phonon modes, including the strongly-coupled CDW amplitude mode, remain time- and fluence-independent, which is unusual compared to previously investigated materials. Our study opens a new avenue for capturing the coherent evolution and couplings of strongly-coupled materials and quantum systems.

     
    more » « less
  2. Doping can alter certain electronics, including the thermoelectric properties of an organic semiconductor. These alterations may enable viable tunable devices that could be useful in temperature sensing for autonomous controls. Here, we demonstrate a dual-modulation organic field-effect transistor (OFET) where temperature can modulate the current-voltage characteristics of the OFET and gate voltage can modulate the thermoelectric properties of the active layer in the same device. Specifically, Poly(3-hexylthiophene-2,5-diyl) (P3HT) was utilized as the host p-type semiconducting polymer, and iodine was utilized as the thermoelectric minority dopant. The finished devices were characterized with a semiconductor analyzer system with temperature controlled using two thermoelectric cooling plates. The FETs with iodine doping levels in the range of 0.25% to 0.5% mole ratio with respect to the P3HT exhibit the greatest on/off ratios. This study also observed that P3HT thin film samples with an intermediate iodine doping concentration of 0.25% mole ratio exhibit an optimal thermoelectric power factor (PF).

     
    more » « less
  3. We have studied dispersion of surface plasmon polaritons (SPPs) in the Kretschmann geometry (prism/Ag/dye-doped polymer) in weak, intermediate, and ultra-strong exciton–plasmon coupling regimes. The dispersion curves obtained in the reflection experiment were in good agreement with the simple model predictions at small concentrations of dye (Rhodamine 590, Rh590) in the polymer (Poly(methyl methacrylate), PMMA). At the same time, highly unusual multi-segment “staircase-like” dispersion curves were observed at extra-large dye concentrations, also in agreement with the simple theoretical model predicting large, small, and negative group velocities featured by different polariton branches. In a separate experiment, we measured angular dependent emission of Rh590 dye and obtained the dispersion curves consisting of two branches, one nearly resembling the SPP dispersion found in reflection and the second one almost horizontal. The results of our study pave the road to unparalleled fundamental science and future applications of weak and strong light—matter interactions.

     
    more » « less
  4. Amphiphilic complexes with luminescent rare earth metal ions suitable for Lanmuir-Blodgett (LB) deposition have been synthesized. LB monolayers with closely packed Eu complexes deposited directly on silver demonstrate significant far-field emission in contrast to the theoretical predictions of full quenching. Angular radiation and polarization patterns of the electric and magnetic dipole emission of Eu3+point to a high excitation efficiency of surface plasmon polaritons. Different luminescent behavior of closely packed emitters in comparison to diluted systems is tentatively attributed to the collective state of emitters in LB layers formed via near-field coupling with surface plasmons.

     
    more » « less
  5. Thin-film transparent heaters (TFTHs) are gaining popularity in optoelectronics and a variety of domestic applications, including smart windows, car defrosters, and other devices. The deposition and characterization of TFTHs made of gallium-doped zinc oxide (GZO) are presented in this work. GZO thin films were deposited via pulsed laser deposition on glass substrates with varying oxygen partial pressures from 0 to 10 mTorr during deposition. The samples demonstrated very low sheet resistance values between 5 and 17 Ω/sq from 0 to 10 mTorr, respectively. UV/vis transmission spectra revealed that TFTHs have a high optical transparency above 80%. GZO-based TFTHs demonstrated a consistent and repeatable joule heating effect, with temperatures reaching 76 °C with a low input voltage of 10 V. This research could guide the future use of GZO as a transparent conducting oxide material for many potential cost-effective applications from low-powered electronics to lightweight and wearable devices.

     
    more » « less
  6. A series of different high κ dielectrics such as HfO2, ZrO2, and Al2O3 thin films were studied as an alternative material for the possible replacement of traditional SiO2. These large areas, as well as conformal dielectrics thin films, were grown by the atomic layer deposition technique on a p-type silicon substrate at two different deposition temperatures (150 and 250 °C). Atomic force microscopic study reveals that the surface of the films is very smooth with a measured rms surface roughness value of less than 0.4 nm in some films. After the deposition of the high κ layer, a top metal electrode was deposited onto it to fabricate metal oxide semiconductor capacitor (MOSCAP) structures. The I–V curve reveals that the sample growth at high temperatures exhibits a high resistance value and lower leakage current densities. Frequency-dependent (100 kHz to 1 MHz) C–V characteristics of the MOSCAPs were studied steadily. Furthermore, we have prepared a metal oxide semiconductor field-effect transistor device with Al-doped ZnO as a channel material, and the electrical characteristic of the device was studied. The effect of growth temperature on the structure, surface morphology, crystallinity, capacitance, and dielectric properties of the high κ dielectrics was thoroughly analyzed through several measurement techniques, such as XRD, atomic force microscopy, semiconductor parameter analysis, and ultraviolet-visible spectroscopy.

     
    more » « less
  7. Kim, Jaehwan ; Oh, Ilkwon ; Yoon, Hargsoon ; Porfiri, Maurizio (Ed.)
    Electrical Impedance Tomography (EIT) is a medical imaging technique that reconstructs impedance distribution inside a target object by injecting electrical currents into pairs of electrodes and measuring induced voltages on the remaining electrodes. Since neural signals result from the activity of ion channels causing impedance changes in the cell membrane, EIT can image these neural activities for understanding brain function and medical purposes. In our research, our self-developed electronic prototype board was used to generate high-quality electrical current and collect the data on electrodes with a high sampling rate and bit-resolution. In image reconstruction, a preprocessing data analysis algorithm was newly developed and applied to improve the accuracy of our EIT imaging. The human head has complex anatomical geometry and non-uniform resistivity distribution along with the highly resistive skull, which makes brain-EIT remains challenging inaccurate image reconstruction. To mimic the human head, a multi-layered human head phantom was designed and tested to investigate the effect of the skull structure on imaging. In this presentation, comparison studies for measurements and simulation results will be introduced to discuss the source of errors and improve the accuracy and efficiency of our brain-EIT system. 
    more » « less