skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2112595

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We studied dispersion in Rhodamine laser dyes in the Kretschmann geometry and found (i) multi-branch “staircase” dispersion curves in singly doped and double doped PMMA polymer, (ii) emergence of the new dispersion “fork” branch, (iii) unparallel dispersion and coupling in the mixture of two different dyes, and (iv) effect of high dye concentration on strong coupling without metal. 
    more » « less
    Free, publicly-accessible full text available May 22, 2026
  2. Abstract Organic compounds containing luminous rare-earth ions are of interest for numerous nanophotonic and plasmonic applications, including nanoscale lasers, biosensors, and optical magnetism studies. Optical studies of Eu3+complexes revealed that ultra-thin LB monolayers are highly luminescent even when deposited directly on plasmonic metal, which makes these materials very promising for plasmonic applications and studies, including control and enhancement of magnetic dipole emission with a plasmonic environment. In this work, we synthesize amphiphilic complexes with various rare-earth ions Nd3+, Yb3+, and DPT ligands and show that they all are suitable for monolayer or multilayer deposition with the Langmuir–Blodgett (LB) technique. Graphical abstract 
    more » « less
  3. Abstract Methods to probe and understand the dynamic response of materials following impulsive excitation are important for many fields, from materials and energy sciences to chemical and neuroscience. To design more efficient nano, energy, and quantum devices, new methods are needed to uncover the dominant excitations and reaction pathways. In this work, we implement a newly-developed superlet transform—a super-resolution time-frequency analytical method—to analyze and extract phonon dynamics in a laser-excited two-dimensional (2D) quantum material. This quasi-2D system, 1T-TaSe2, supports both equilibrium and metastable light-induced charge density wave (CDW) phases mediated by strongly coupled phonons. We compare the effectiveness of the superlet transform to standard time-frequency techniques. We find that the superlet transform is superior in both time and frequency resolution, and use it to observe and validate novel physics. In particular, we show fluence-dependent changes in the coupled dynamics of three phonon modes that are similar in frequency, including the CDW amplitude mode, that clearly demonstrate a change in the dominant charge-phonon couplings. More interestingly, the frequencies of the three phonon modes, including the strongly-coupled CDW amplitude mode, remain time- and fluence-independent, which is unusual compared to previously investigated materials. Our study opens a new avenue for capturing the coherent evolution and couplings of strongly-coupled materials and quantum systems. 
    more » « less
  4. Free, publicly-accessible full text available December 1, 2026
  5. Free, publicly-accessible full text available August 1, 2026
  6. Work function is an essential material’s property playing important roles in electronics, photovoltaics, and more recently, in nanophotonics. We have studied e昀 ects of organic, and inorganic dielectric materials on work functions of Au 昀 lms in single layered, and multilayered structures. We found that measured work function of metallic surfaces can be a昀 ected by dielectric materials situated 10–100 nm away from the metallic surface. We have found that, (i) the glass underneath ~ 50 nm gold slab reduces the work function of gold, (ii) Rh590:PMMA increases the work function of a gold 昀 lm deposited on top of the polymer, and (iii) reduces it if Rh590:PMMA is deposited on top of Au. (iv) With increase of the Rh590 concentration in PMMA, n, the work function 昀 rst decreases (at n < 64 g/l), and then increases (at n > 64 g/l). (v) The work function of a Fabry–Perot cavity or an MIM waveguide is almost the same as that of single Au 昀 lms of comparable thickness. The experimental results can be qualitatively explained in terms of a simple model taking into account adhesion of charged molecules to a metallic surface, and formation of a double layer of charges accelerating or decelerating electrons exiting the metal and decreasing or increasing the work function. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  7. Engheta, Nader; Noginov, Mikhail A; Zheludev, Nikolay I (Ed.)
  8. Engheta, Nader; Noginov, Mikhail A; Zheludev, Nikolay I (Ed.)
  9. Doping can alter certain electronics, including the thermoelectric properties of an organic semiconductor. These alterations may enable viable tunable devices that could be useful in temperature sensing for autonomous controls. Here, we demonstrate a dual-modulation organic field-effect transistor (OFET) where temperature can modulate the current-voltage characteristics of the OFET and gate voltage can modulate the thermoelectric properties of the active layer in the same device. Specifically, Poly(3-hexylthiophene-2,5-diyl) (P3HT) was utilized as the host p-type semiconducting polymer, and iodine was utilized as the thermoelectric minority dopant. The finished devices were characterized with a semiconductor analyzer system with temperature controlled using two thermoelectric cooling plates. The FETs with iodine doping levels in the range of 0.25% to 0.5% mole ratio with respect to the P3HT exhibit the greatest on/off ratios. This study also observed that P3HT thin film samples with an intermediate iodine doping concentration of 0.25% mole ratio exhibit an optimal thermoelectric power factor (PF). 
    more » « less