skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A transparent p-type semiconductor designed via a polarizability-enhanced strongly correlated insulator oxide matrix
We report a novel strategy for developing an outstanding transparent p-type conducting oxide exhibiting a deep work function as well as a wide band gap by engineering the polarizability of a strongly correlated NiWO4 more » « less
Award ID(s):
2223922
PAR ID:
10557752
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
RSC Publisher
Date Published:
Journal Name:
Materials Horizons
ISSN:
2051-6347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Reactions of (O=)PH(OCH2CH3)2and BrMg(CH2)mCH=CH2(4.9–3.2 equiv;m=4 (a), 5 (b), 6 (c)) give the dialkylphosphine oxides (O=)PH[(CH2)mCH=CH2]2(2 a–c; 77–81 % after workup), which are treated with NaH and then α,ω‐dibromides Br(CH2)nBr (0.49–0.32 equiv;n=8 (a′), 10 (b′), 12 (c′), 14 (d′)) to yield the bis(trialkylphosphine oxides) [H2C=CH(CH2)m]2P(=O)(CH2)n(O=)P[(CH2)mCH=CH2]2(3 ab′,3 bc′,3 cd′,3 ca′; 79–84 %). Reactions of3 bc′and3 ca′with Grubbs’ first‐generation catalyst and then H2/PtO2afford the dibridgehead diphosphine dioxides(4 bc′,4 ca′; 14–19 %,n′=2m+2);31P NMR spectra show two stereoisomeric species (ca. 70:30). Crystal structures of two isomers of the latter are obtained,out,out‐4 ca′and a conformer ofin,out‐4 ca′that features crossed chains, such that the (O=)P vectors appearout,out. Whereas4 bc′resists crystallization, a byproduct derived from an alternative metathesis mode, (CH2)12P(=O)(CH2)12(O=)P(CH2)12, as well as3 ab′and3 bc′, are structurally characterized. The efficiencies of other routes to dibridgehead diphosphorus compounds are compared. 
    more » « less
  2. Abstract Superionic conductors, includingACrX2(A=Ag, Cu; X = S, Se) compounds, have attracted attention due to their low lattice thermal conductivity and high ionic conductivity. These properties are driven by structural characteristics such as anharmonicity, soft bonding, and disorder, which enhance both fast ion transport and thermal resistance. In the present study, we investigate the impact of various factors (e.g.A-site disorder, microstructure, speed of sound and chemical composition) on the thermal conductivity of the compounds CuCrS2, CuCrSe2, AgCrS2and AgCrSe2. The samples were synthesized using solid state reaction, ball milling and subsequent spark plasma sintering, and thermal diffusivity, electrical resistivity, Hall coefficients and Seebeck coefficients were measured as a function of temperature. The selenides were found to behave as degenerate semiconductors, with reasonable thermoelectric figure of merit (up to 0.79 in CuCrSe2), while the sulfides behaved as non-degenerate semiconductors with high electrical resistivity. At room temperature, all samples are in the ordered phase and show low lattice thermal conductivity ranging from 0.60 W m−1-K in AgCrSe2to 1.1 W m−1-K in CuCrSe2. Little reduction in lattice thermal conductivity was observed in the high-temperature phase, despite the increased disorder on the cation site and the onset of superionic conductivity. This suggests that the low lattice thermal conductivity inACrX2compounds is an inherent property of the crystal structure, caused by anharmonic bonding and diffuson dominated transport. 
    more » « less
  3. Abstract Whether tetra‐tert‐butyl‐s‐indacene is a symmetricD2hstructure or a bond‐alternatingC2hstructure remains a standing puzzle. Close agreement between experimental and computed proton chemical shifts based on minima structures optimized at the M06‐2X, ωB97X‐D, and M11 levels confirm a bond‐localizedC2hsymmetry, which is consistent with the expected strong antiaromaticity of TtB‐s‐indacene. 
    more » « less
  4. Summary Steady‐state photosyntheticCO2responses (A/Cicurves) are used to assess environmental responses of photosynthetic traits and to predict future vegetative carbon uptake through modeling. The recent development of rapidA/Cicurves (RACiRs) permits faster assessment of these traits by continuously changing [CO2] around the leaf, and may reveal additional photosynthetic properties beyond what is practical or possible with steady‐state methods.Gas exchange necessarily incorporates photosynthesis and (photo)respiration. Each process was expected to respond on different timescales due to differences in metabolite compartmentation, biochemistry and diffusive pathways. We hypothesized that metabolic lags in photorespiration relative to photosynthesis/respiration andCO2diffusional limitations can be detected by varying the rate of change in [CO2] duringRACiR assays. We tested these hypotheses through modeling and experiments at ambient and 2% oxygen.Our data show that photorespiratory delays cause offsets in predictedCO2compensation points that are dependent on the rate of change in [CO2]. Diffusional limitations may reduce the rate of change in chloroplastic [CO2], causing a reduction in apparentRACiR slopes under highCO2ramp rates.MultirateRACiRs may prove useful in assessing diffusional limitations to gas exchange and photorespiratory rates. 
    more » « less
  5. Abstract Strategic incorporation of ameta‐dimethylamino (–NMe2) group on the conformationally locked green fluorescent protein (GFP) model chromophore (m‐NMe2‐LpHBDI) has drastically altered molecular electronic properties, counterintuitively enhancing fluorescence of only the neutral and cationic chromophores in aqueous solution. A ~200‐fold decrease in fluorescence quantum yield ofm‐NMe2‐LpHBDI in alcohols (e.g., MeOH, EtOH and 2‐PrOH) supports this GFP‐derived compound as a fluorescence turn‐on water sensor, with large fluorescence intensity differences between H2O and ROH emissions in various H2O/ROH binary mixtures. A combination of steady‐state electronic spectroscopy, femtosecond transient absorption, ground‐state femtosecond stimulated Raman spectroscopy (FSRS) and quantum calculations elucidates an intermolecular hydrogen‐bonding chain between a solvent –OH group and the chromophore phenolic ring –NMe2and –OH functional groups, wherein fluorescence differences arise from an extended hydrogen‐bonding network beyond the first solvation shell, as opposed to fluorescence quenching via a dark twisted intramolecular charge‐transfer state. The absence of ameta‐NMe2group twisting coordinate upon electronic excitation was corroborated by experiments on control samples without themeta‐NMe2group or with bothmeta‐NMe2andpara‐OH groups locked in a six‐membered ring. These deep mechanistic insights stemming from GFP chromophore scaffold will enable rational design of organic, compact and environmentally friendly water sensors. 
    more » « less