Abstract The transition towards designs which co-package electronic and photonic die together in data center switch packages has created a scaling path to Petabyte per second (Pbps) input/output (I/O) in such systems. In a co-packaged design, the scaling of bandwidth, cost, and energy will be governed by the number of optical I/O channels and the data rate per channel. While optical communication provide an opportunity to exploit wavelength division multiplexing (WDM) to scale data rate, the limited 127 µm pitch of V-groove based single mode fiber arrays and the use of active alignment and bonding for their packaging present challenges to scaling the number of optical channels. Flip-chip optical couplers which allow for low loss, broadband operation and automated passive assembly represent a solution for continued scaling. In this paper, we propose a novel scheme to vertically couple between silicon based waveguides on separate chips using graded index (GRIN) couplers in combination with an evanescent coupler. Simulation results using a 3D Finite-Difference Time-Domain (FDTD) solver are presented, demonstrating coupling losses as low as 0.35 dB for a chip-to-chip gap of 11 µm; 1-dB vertical and lateral alignment tolerances of approximately 2.45 µm and ± 2.66 µm, respectively; and a possible 1-dB bandwidth of greater than 1500 nm. These results demonstrate the potential of our coupler as a universal interface in future co-packaged optics systems.
more »
« less
Low Loss Chip-to-Chip Couplers for High Density Co-Packaged Optics
An experimentally demonstrated, vertical chip-to-chip evanescent coupler between silicon nitride (Si₃N₄) and silicon (Si) is presented with the coupler loss measured to be 0.39 ± 1.06 dB at 1550 nm with a 1-dB bandwidth of 160 nm extending across the C-band, S-band, and L-band (1480-1640 nm). The average coupling loss was determined to be 0.73 dB for the 1480-1640 nm wavelength range with a ± 2σ tolerance of ± 0.92 dB. The 1-dB lateral alignment tolerance was 1.56 ± 0.14 μm at 1550 nm and the average tolerance was 1.38 ± 0.24 μm across the 1480-1640 nm wavelength regime. In addition, the average coupling loss varied by less than ± 0.35 dB and the average 1-dB alignment tolerance varied by less than ± 30 nm for temperatures varying from 23-60°C. Finally, the average coupling loss range was less than 1.5 dB range across four sets of identically packaged die. This is the first experimental demonstration of an inter-chip, passively assembled evanescent coupler using standard CMOS foundry processes for directly coupling between Si and Si₃N₄, overcoming a waveguide refractive index difference of Δn = 1.32 without requiring taper tip widths of less than 100 nm.
more »
« less
- Award ID(s):
- 2236093
- PAR ID:
- 10557819
- Publisher / Repository:
- Optica Open
- Date Published:
- Format(s):
- Medium: X
- Institution:
- Optica Open
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We demonstrate four-wave mixing (FWM) interactions in a-Si:H waveguides in a multilayer integrated silicon photonic chip. The a-Si:H waveguides are accessed through interlayer couplers from waveguides composed of SiNx. The interlayer couplers achieve a coupling of 0.51 dB loss per transition at the target wavelength of 1550 nm. We observe greater idler power extraction and conversion efficiency from the FWM interaction in the interlayer-coupled multilayer waveguides than in single-material waveguides.more » « less
-
Integrated lithium niobate (LN) photonic circuits have recently emerged as a promising candidate for advanced photonic functions such as high-speed modulation, nonlinear frequency conversion, and frequency comb generation. For practical applications, optical interfaces that feature low fiber-to-chip coupling losses are essential. So far, the fiber-to-chip loss (commonly >10 dB/facet) has dominated the total insertion losses of typical LN photonic integrated circuits, where on-chip losses can be as low as 0.03–0.1 dB/cm. Here we experimentally demonstrate a low-loss mode size converter for coupling between a standard lensed fiber and sub-micrometer LN rib waveguides. The coupler consists of two inverse tapers that convert the small optical mode of a rib waveguide into a symmetrically guided mode of a LN nanowire, featuring a larger mode area matched to that of a tapered optical fiber. The measured fiber-to-chip coupling loss is lower than 1.7 dB/facet with high fabrication tolerance and repeatability. Our results open the door for practical integrated LN photonic circuits efficiently interfaced with optical fibers.more » « less
-
We propose a nanogap-enhanced phase-change waveguide with silicon PIN heaters. Thanks to the enhanced light-matter interaction in the nanogap, the proposed structure exhibits strong attenuation (Δα = ∼35 dB/µm) and optical phase (Δneff = ∼1.2) modulation atλ = 1550 nm when achieving complete phase transitions. We further investigate two active optical devices based on the proposed waveguide, including an electro-absorption modulator and a 1 × 2 directional-coupler optical switch. Finite-difference time-domain simulation of the proposed modulator shows a high extinction ratio of ∼17 dB at 1550 nm with an active segment of volume only ∼0.004λ3. By exploiting a directional coupler design, we present a 1 × 2 optical switch with an insertion loss of < 4 dB and a compact coupling length of ∼ 15 µm while maintaining small crosstalk less than −7.2 dB over an optical bandwidth of 50 nm. Thermal analysis shows that a 10 V pulse of 30 ns (1×1 modulator) and 55 ns (1×2 switch) in duration is required to raise the GST temperature of the phase-change waveguide above the melting temperature to induce the amorphization; however, the complete crystallization occurs by applying a 5 V pulse of 180 ns (1×1 modulator) and a 6 V pulse of 200 ns (1×2 switch), respectively.more » « less
-
Integrated nonlinear photonic circuits received rapid development in recent years, providing all-optical functionalities enabled by cavity-enhanced photon-photon interaction for classical and quantum applications. A high-efficiency fiber-to-chip interface is key to these integrated photonic circuits for quantum information tasks, as photon-loss is a major source that weakens quantum protocols. Here, overcoming material and fabrication limitation of thin-film aluminum nitride by adopting a stepwise waveguiding scheme, we demonstrate low-loss adiabatic fiber-optic couplers in aluminum nitride films with a substantial thickness (∼600 nm) for optimized nonlinear photon interaction. For telecom (1550 nm) and near-visible (780 nm) transverse magnetic-polarized light, the measured insertion loss of the fiber-optic coupler is -0.97 dB and -2.6 dB, respectively. Our results will facilitate the use of aluminum nitride integrated photonic circuits as efficient quantum resources for generation of entangled photons and squeezed light on microchips.more » « less
An official website of the United States government

