skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Unified Approach for Resilience and Causal Responsibility with Integer Linear Programming (ILP) and LP Relaxations
What is a minimal set of tuples to delete from a database in order to eliminate all query answers? This problem is called the resilience of a query and is one of the key algorithmic problems underlying various forms of reverse data management, such as view maintenance, deletion propagation and causal responsibility. A long-open question is determining the conjunctive queries (CQs) for which resilience can be solved in PTIME. We shed new light on this problem by proposing a unified Integer Linear Programming (ILP) formulation. It is unified in that it can solve both previously studied restrictions (e.g., self-join-free CQs under set semantics that allow a PTIME solution) and new cases (all CQs under set or bag semantics). It is also unified in that all queries and all database instances are treated with the same approach, yet the algorithm is guaranteed to terminate in PTIME for all known PTIME cases. In particular, we prove that for all known easy cases, the optimal solution to our ILP is identical to a simpler Linear Programming (LP) relaxation, which implies that standard ILP solvers return the optimal solution to the original ILP in PTIME. Our approach allows us to explore new variants and obtain new complexity results. 1) It works under bag semantics, for which we give the first dichotomy results in the problem space. 2) We extend our approach to the related problem of causal responsibility and give a more fine-grained analysis of its complexity. 3) We recover easy instances for generally hard queries, including instances with read-once provenance and instances that become easy because of Functional Dependencies in the data. 4) We solve an open conjecture about a unified hardness criterion from PODS 2020 and prove the hardness of several queries of previously unknown complexity. 5) Experiments confirm that our findings accurately predict the asymptotic running times, and that our universal ILP is at times even quicker than a previously proposed dedicated flow algorithm.  more » « less
Award ID(s):
1956096
PAR ID:
10557924
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Management of Data
Volume:
1
Issue:
4
ISSN:
2836-6573
Page Range / eLocation ID:
1 to 27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of finding the minimal-size factorization of the provenance of self-join-free conjunctive queries, i.e.,we want to find a formula that minimizes the number of variable repetitions. This problem is equivalent to solving the fundamental Boolean formula factorization problem for the restricted setting of the provenance formulas of self-join free queries. While general Boolean formula minimization is Σp2-complete, we show that the problem is NP-Complete in our case. Additionally, we identify a large class of queries that can be solved in PTIME, expanding beyond the previously known tractable cases of read-once formulas and hierarchical queries. We describe connections between factorizations, Variable Elimination Orders (VEOs), and minimal query plans. We leverage these insights to create an Integer Linear Program (ILP) that can solve the minimal factorization problem exactly. We also propose a Max-Flow Min-Cut (MFMC) based algorithm that gives an efficient approximate solution. Importantly, we show that both the Linear Programming (LP) relaxation of our ILP, and our MFMC-based algorithm are always correct for all currently known PTIME cases. Thus, we present two unified algorithms (ILP and MFMC) that can both recover all known PTIME cases in PTIME, yet also solve NP-Complete cases either exactly (ILP) or approximately (MFMC), as desired. 
    more » « less
  2. In database-as-a-service platforms, automated ver-ification of query equivalence helps eliminate redundant computation in the form of overlapping sub-queries. Researchers have proposed two pragmatic techniques to tackle this problem. The first approach consists of reducing the queries to algebraic expressions and proving their equivalence using an algebraic theory. The limitations of this technique are threefold. It cannot prove the equivalence of queries with significant differences in the attributes of their relational operators (e.g., predicates in the filter operator). It does not support certain widely-used SQL features (e.g., NULL values). Its verification procedure is computationally intensive. The second approach transforms this problem to a constraint satisfaction problem and leverages a general-purpose solver to determine query equivalence. This technique consists of deriving the symbolic representation of the queries and proving their equivalence by determining the query containment relationship between the symbolic expressions. While the latter approach addresses all the limitations of the former technique, it only proves the equivalence of queries under set semantics (i.e., output tables must not contain duplicate tuples). However, in practice, database applications use bag semantics (i.e., output tables may contain duplicate tuples) In this paper, we introduce a novel symbolic approach for proving query equivalence under bag semantics. We transform the problem of proving query equivalence under bag semantics to that of proving the existence of a bijective, identity map between tuples returned by the queries on all valid inputs. We classify SQL queries into four categories, and propose a set of novel category-specific verification algorithms. We implement this symbolic approach in SPES and demonstrate that it proves the equivalence of a larger set of query pairs (95/232) under bag semantics compared to the SOTA tools based on algebraic (30/232) and symbolic approaches (67/232) under set and bag semantics, respectively. Furthermore, SPES is 3X faster than the symbolic tool that proves equivalence under set semantics. 
    more » « less
  3. The query containment problem is a fundamental algorithmic problem in data management. While this problem is well understood under set semantics, it is by far less understood under bag semantics. In particular, it is a long-standing open question whether or not the conjunctive query containment problem under bag semantics is decidable. We unveil tight connections between information theory and the conjunctive query containment under bag semantics. These connections are established using information inequalities, which are considered to be the laws of information theory. Our first main result asserts that deciding the validity of a generalization of information inequalities is many-one equivalent to the restricted case of conjunctive query containment in which the containing query is acyclic; thus, either both these problems are decidable or both are undecidable. Our second main result identifies a new decidable case of the conjunctive query containment problem under bag semantics. Specifically, we give an exponential-time algorithm for conjunctive query containment under bag semantics, provided the containing query is chordal and admits a simple junction tree. 
    more » « less
  4. The query containment problem is a fundamental algorithmic prob- lem in data management. While this problem is well understood under set semantics, it is by far less understood under bag semantics. In particular, it is a long-standing open question whether or not the conjunctive query containment problem under bag semantics is decidable. We unveil tight connections between information theory and the conjunctive query containment under bag semantics. These connections are established using information inequalities, which are considered to be the laws of information theory. Our first main result asserts that deciding the validity of a generalization of infor- mation inequalities is many-one equivalent to the restricted case of conjunctive query containment in which the containing query is acyclic; thus, either both these problems are decidable or both are undecidable. Our second main result identifies a new decidable case of the conjunctive query containment problem under bag semantics. Specifically, we give an exponential time algorithm for conjunctive query containment under bag semantics, provided the containing query is chordal and admits a simple junction tree. 
    more » « less
  5. Checking query equivalence is of great significance in database systems. Prior work in automated query equivalence checking sets the first steps in formally modeling and reasoning about query optimization rules, but only supports a limited number of query features. In this paper, we present Qed, a new framework for query equivalence checking based on bag semantics. Qed uses a new formalism called Q-expressions that models queries using different normal forms for efficient equivalence checking, and models features such as integrity constraints and NULLs in a principled way unlike prior work. Our formalism also allows us to define a new query fragment that encompasses many real-world queries with a complete equivalence checking algorithm, assuming a complete first-order theory solver. Empirically, Qed can verify 299 out of 444 query pairs extracted from the Calcite framework and 979 out of 1287 query pairs extracted from CockroachDB, which is more than 2× the number of cases proven by prior state-of-the-art solver. 
    more » « less