skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bag Query Containment and Information Theory
The query containment problem is a fundamental algorithmic problem in data management. While this problem is well understood under set semantics, it is by far less understood under bag semantics. In particular, it is a long-standing open question whether or not the conjunctive query containment problem under bag semantics is decidable. We unveil tight connections between information theory and the conjunctive query containment under bag semantics. These connections are established using information inequalities, which are considered to be the laws of information theory. Our first main result asserts that deciding the validity of a generalization of information inequalities is many-one equivalent to the restricted case of conjunctive query containment in which the containing query is acyclic; thus, either both these problems are decidable or both are undecidable. Our second main result identifies a new decidable case of the conjunctive query containment problem under bag semantics. Specifically, we give an exponential-time algorithm for conjunctive query containment under bag semantics, provided the containing query is chordal and admits a simple junction tree.  more » « less
Award ID(s):
1703281 1907997 1614738 1535565 2109922
PAR ID:
10340948
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Transactions on Database Systems
Volume:
46
Issue:
3
ISSN:
0362-5915
Page Range / eLocation ID:
1 to 39
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The query containment problem is a fundamental algorithmic prob- lem in data management. While this problem is well understood under set semantics, it is by far less understood under bag semantics. In particular, it is a long-standing open question whether or not the conjunctive query containment problem under bag semantics is decidable. We unveil tight connections between information theory and the conjunctive query containment under bag semantics. These connections are established using information inequalities, which are considered to be the laws of information theory. Our first main result asserts that deciding the validity of a generalization of infor- mation inequalities is many-one equivalent to the restricted case of conjunctive query containment in which the containing query is acyclic; thus, either both these problems are decidable or both are undecidable. Our second main result identifies a new decidable case of the conjunctive query containment problem under bag semantics. Specifically, we give an exponential time algorithm for conjunctive query containment under bag semantics, provided the containing query is chordal and admits a simple junction tree. 
    more » « less
  2. In database-as-a-service platforms, automated ver-ification of query equivalence helps eliminate redundant computation in the form of overlapping sub-queries. Researchers have proposed two pragmatic techniques to tackle this problem. The first approach consists of reducing the queries to algebraic expressions and proving their equivalence using an algebraic theory. The limitations of this technique are threefold. It cannot prove the equivalence of queries with significant differences in the attributes of their relational operators (e.g., predicates in the filter operator). It does not support certain widely-used SQL features (e.g., NULL values). Its verification procedure is computationally intensive. The second approach transforms this problem to a constraint satisfaction problem and leverages a general-purpose solver to determine query equivalence. This technique consists of deriving the symbolic representation of the queries and proving their equivalence by determining the query containment relationship between the symbolic expressions. While the latter approach addresses all the limitations of the former technique, it only proves the equivalence of queries under set semantics (i.e., output tables must not contain duplicate tuples). However, in practice, database applications use bag semantics (i.e., output tables may contain duplicate tuples) In this paper, we introduce a novel symbolic approach for proving query equivalence under bag semantics. We transform the problem of proving query equivalence under bag semantics to that of proving the existence of a bijective, identity map between tuples returned by the queries on all valid inputs. We classify SQL queries into four categories, and propose a set of novel category-specific verification algorithms. We implement this symbolic approach in SPES and demonstrate that it proves the equivalence of a larger set of query pairs (95/232) under bag semantics compared to the SOTA tools based on algebraic (30/232) and symbolic approaches (67/232) under set and bag semantics, respectively. Furthermore, SPES is 3X faster than the symbolic tool that proves equivalence under set semantics. 
    more » « less
  3. What is a minimal set of tuples to delete from a database in order to eliminate all query answers? This problem is called the resilience of a query and is one of the key algorithmic problems underlying various forms of reverse data management, such as view maintenance, deletion propagation and causal responsibility. A long-open question is determining the conjunctive queries (CQs) for which resilience can be solved in PTIME. We shed new light on this problem by proposing a unified Integer Linear Programming (ILP) formulation. It is unified in that it can solve both previously studied restrictions (e.g., self-join-free CQs under set semantics that allow a PTIME solution) and new cases (all CQs under set or bag semantics). It is also unified in that all queries and all database instances are treated with the same approach, yet the algorithm is guaranteed to terminate in PTIME for all known PTIME cases. In particular, we prove that for all known easy cases, the optimal solution to our ILP is identical to a simpler Linear Programming (LP) relaxation, which implies that standard ILP solvers return the optimal solution to the original ILP in PTIME. Our approach allows us to explore new variants and obtain new complexity results. 1) It works under bag semantics, for which we give the first dichotomy results in the problem space. 2) We extend our approach to the related problem of causal responsibility and give a more fine-grained analysis of its complexity. 3) We recover easy instances for generally hard queries, including instances with read-once provenance and instances that become easy because of Functional Dependencies in the data. 4) We solve an open conjecture about a unified hardness criterion from PODS 2020 and prove the hardness of several queries of previously unknown complexity. 5) Experiments confirm that our findings accurately predict the asymptotic running times, and that our universal ILP is at times even quicker than a previously proposed dedicated flow algorithm. 
    more » « less
  4. In this paper we investigate the problem of quantifying the contribution of each variable to the satisfying assignments of a Boolean function based on the Shapley value. Our main result is a polynomial-time equivalence between computing Shapley values and model counting for any class of Boolean functions that are closed under substitutions of variables with disjunctions of fresh variables. This result settles an open problem raised in prior work, which sought to connect the Shapley value computation to probabilistic query evaluation. We show two applications of our result. First, the Shapley values can be computed in polynomial time over deterministic and decomposable circuits, since they are closed under OR-substitutions. Second, there is a polynomial-time equivalence between computing the Shapley value for the tuples contributing to the answer of a Boolean conjunctive query and counting the models in the lineage of the query. This equivalence allows us to immediately recover the dichotomy for Shapley value computation in case of self-join-free Boolean conjunctive queries; in particular, the hardness for non-hierarchical queries can now be shown using a simple reduction from the \#P-hard problem of model counting for lineage in positive bipartite disjunctive normal form. 
    more » « less
  5. Probabilistic databases (PDBs) provide users with a principled way to query data that is incomplete or imprecise. In this work, we study computing expected multiplicities of query results over probabilistic databases under bag semantics which has PTIME data complexity. However, does this imply that bag probabilistic databases are practical? We strive to answer this question from both a theoretical as well as a systems perspective. We employ concepts from fine-grained complexity to demonstrate that exact bag probabilistic query processing is fundamentally less efficient than deterministic bag query evaluation, but that fast approximations are possible by sampling monomials from a circuit representation of a result tuple's lineage. A remaining issue, however, is that constructing such circuits, while in PTIME, can nonetheless have significant overhead. To avoid this cost, we utilize approximate query processing techniques to directly sample monomials without materializing lineage upfront. Our implementation inFastPDBprovides accurate anytime approximation of probabilistic query answers and scales to datasets orders of magnitude larger than competing methods. 
    more » « less