Soft robots, inspired by biological adaptability, can excel where rigid robots may falter and offer flexibility and safety for complex, unpredictable environments. In this paper, we present the Omnidirectional Bending Actuator (OBA), a soft robotic actuation module which is fabricated from off-the-shelf materials with easy scalability and consists of three pneumatic chambers. Distinguished by its streamlined manufacturing process, the OBA is capable of bending in all directions with a high force-to-weight ratio, potentially addressing a notable research gap in knit fabric actuators with multi-degree-of-freedom capabilities. We will present the design and fabrication of the OBA, examine its motion and force capabilities, and demonstrate its capability for stiffness modulation and its ability to maintain set configurations under loads. The mass of the entire actuation module is 278 g, with a range of omnidirectional bending up to 90.80°, a maximum tolerable pressure of 862 kPa, and a bending payload (block force) of 10.99 N, resulting in a force-to-weight ratio of 39.53 N/kg. The OBA’s cost-effective and simple fabrication, compact and lightweight structure, and capability to withstand high pressures present it as an attractive actuation primitive for applications demanding efficient and versatile soft robotic solutions.
more »
« less
This content will become publicly available on August 1, 2025
A Compliant Hinge Joint Driven by the PneuNets Bending Actuator
Abstract While soft robots enjoy the benefits of high adaptability and safety, their inherent flexibility makes them suffer from low load-carrying capacity and motion precision, which limits their applications to a broader range of fields. To address this problem, we propose a novel compliant hinge joint with a stiff backbone for load-carrying coupled with soft pneumatic networks (PneuNets) bending actuators. We derive a pseudo-rigid-body model of the joint design and validate it through experiments and simulations. The results show that the joint can achieve a large range of bending angles. The off-axis stiffness is from 16.74 to 627.63 times the in-axis stiffness. This design can carry a heavy load off-axis while maintaining the in-axis flexibility. This work lays out the foundation for designing high-performance soft robots by combining various flexure mechanisms and pneumatic bending actuators.
more »
« less
- Award ID(s):
- 2019648
- PAR ID:
- 10557969
- Publisher / Repository:
- ASME
- Date Published:
- Journal Name:
- Journal of Mechanisms and Robotics
- Volume:
- 16
- Issue:
- 8
- ISSN:
- 1942-4302
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Bio-inspired soft-robots are nowadays found their place in many applications due to its flexibility, compliance and adaptivity to unstructured environment. The main intricate part of such bio-inspired soft robots are soft pneumatic actuators (SPA) which replicate or mimic the limbs and muscles. The soft actuators are pneumatically actuated and provide bending motion in most cases. However, many engineering and medical applications need axially expanding soft pneumatic actuators to deal with delicate objects. Various studies have put forward designs for SPA with axial deformation, but the majority of them have limited axial deformation, constraining motion and less overall efficacy which limit the scope of utilization. The common practice to enhance the axial deformation of SPA is by incorporating directionally customized reinforcement using fibres or by other means like yarns, fabrics, etc These types of reinforcements are generally embedded to SPA during fabrication and may not have capability for any correction or modification later on hence lack the customization. This paper presents a novel method of radial reinforcement for the enhancement of axial deformation of SPAs with provision of customization. The present study aims to enhance and/or customize the axial deformation of SPA by incorporating external and detachable reinforcement in the form of annulus shaped cap ring. The investigation encompasses the design and attachment of four distinct cap ring geometries to SPA at different locations. Experimental results affirm that cap ring reinforcement bolster the radial stiffness, curbing lateral deformation while permitting axial deformation of soft pneumatic actuators. Out of 64 distinct configurations, the one with full reinforcement, featuring four cap rings of maximum size, yields a remarkable 169% increase in pure axial deformation compared to unreinforced cases. It is also observed that by varying the number and placement locations of cap rings the pure axial deformation can be customized. This novel insight not only propels soft pneumatic actuation technology but also heralds prospects for highly agile and versatile robotic systems which can be used in medical, prosthetics, pharmaceutical and other industries.more » « less
-
Bending permits soft arms to access a workspace that is not colinear with the initial arm axis; the size and shape of this space depends on the characteristics of the soft arm. Soft bending actuators and arms have developed for specific applications, but not characterized for the general relationship between design variables and performance. This paper defines a class of soft bending arms based on its design, considering the arm as a system constructed from many contracting actuators organized into segments. A modular segment design is presented, and seven variants of this design were constructed and tested for bend radius, bend direction, lateral stiffness and contraction. The variants isolate system parameters, in this case, arm radius and number of actuators within a given segment, to quantify how these parameters affect performance. A trade-off was found between lateral stiffness and bend radius, which can be controlled by altering the arm radius or the number of actuators. Bend direction was found to be coupled to both bend radius and arm load. Finally, a three-segment arm following a bio-inspired design is presented to demonstrate how the experimental results apply to soft robot system design.more » « less
-
Abstract Soft actuators are typically designed to be inherently stress‐free and stable. Relaxing such a design constraint allows exploration of harnessing mechanical prestress and elastic instability to achieve potential high‐performance soft robots. Here, the strategy of prestrain relaxation is leveraged to design pre‐curved soft actuators in 2D and 3D with tunable monostability and bistability that can be implemented for multifunctional soft robotics. By bonding stress‐free active layer with embedded pneumatic channels to a uniaxially or biaxially pre‐stretched elastomeric strip or disk, pre‐curved 2D beam‐like bending actuators and 3D doming actuators are generated after prestrain release, respectively. Such pre‐curved soft actuators exhibit tunable monostable and bistable behavior under actuation by simply manipulating the prestrain and the biased bilayer thickness ratio. Their implications in multifunctional soft robotics are demonstrated in achieving high performance in manipulation and locomotion, including energy‐efficient soft gripper to holding objects through prestress, fast‐speed larva‐like jumping soft crawler with average locomotion speed of 0.65 body‐length s−1(51.4 mm s−1), and fast swimming bistable jellyfish‐like soft robot with an average speed of 53.3 mm s−1.more » « less
-
Haptic devices typically rely on rigid actuators and bulky power supply systems, limiting wearability. Soft materials improve comfort, but careful distribution of stiffness is required to ground actuation forces and enable load transfer to the skin. We present Haptiknit, an approach in which soft, wearable, knit textiles with embedded pneumatic actuators enable programmable haptic display. By integrating pneumatic actuators within high- and low-stiffness machine-knit layers, each actuator can transmit 40 newtons in force with a bandwidth of 14.5 hertz. We demonstrate the concept with an adjustable sleeve for the forearm coupled to an untethered pneumatic control system that conveys a diverse array of social touch signals. We assessed the sleeve’s performance for discriminative and affective touch in a three-part user study and compared our results with those of prior electromagnetically actuated approaches. Haptiknit improves touch localization compared with vibrotactile stimulation and communicates social touch cues with fewer actuators than pneumatic textiles that do not invoke distributed stiffness. The Haptiknit sleeve resulted in similar recognition of social touch gestures compared to a voice-coil array but represented a more portable and comfortable form factor.more » « less