skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Numerical Simulation of Orographic Gravity Waves Observed Over Syowa Station: Wave Propagation and Breaking in the Troposphere and Lower Stratosphere
Abstract A high‐resolution model in conjunction with realistic background wind and temperature profiles has been used to simulate gravity waves (GWs) that were observed by an atmospheric radar at Syowa Station, Antarctica on 18 May 2021. The simulation successfully reproduces the observed features of the GWs, including the amplitude of vertical wind disturbances in the troposphere and vertical fluxes of northward momentum in the lower stratosphere. In the troposphere, ship‐wave responses are seen along the coastal topography, while in the stratosphere, critical‐level filtering due to the directional shear causes significant change of the wave pattern. The simulation shows the multi‐layer structure of small‐scale turbulent vorticity around the critical level, where turbulent energy dissipation rates estimated from the radar spectral widths were large, indicative of GW breaking. Another interesting feature of the simulation is a wave pattern with a horizontal wavelength of about 25 km, whose phase lines are aligned with the front of turbulent wake downwind of a hydraulic jump that occurs over steep terrain near the coastline. It is suggested that the GWs are likely radiated from the adiabatic lift of an airmass along an isentropic surface hump near the ground, which explains certain features of the observed GWs in the lower stratosphere.  more » « less
Award ID(s):
2327915
PAR ID:
10558023
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
129
Issue:
3
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Simulations of the weather over the South Island of New Zealand on 28 July 2014 reveal unusual wave activity in the stratosphere. A series of short-wavelength perturbations resembling trapped lee waves were located downstream of the topography, but these waves were in the stratosphere, and their crests were oriented north–south, in contrast to both the northeast–southwest orientation of the spine of the Southern Alps and the crests of trapped waves present in the lower troposphere. Vertical cross sections through these waves show a nodal structure consistent with that of a higher-order trapped-wave mode. Eigenmode solutions to the vertical structure equation for two-dimensional, linear, Boussinesq waves were obtained for a horizontally homogeneous sounding representative of the 28 July case. These solutions include higher-order modes having large amplitude in the stratosphere that are supported by just the zonal wind component. Two of these higher-order modes correspond to trapped waves that develop in an idealized numerical simulation of the 28 July 2014 case. These higher-order modes are trapped by very strong westerly winds in the midstratosphere and are triggered by north–south-oriented features in the subrange-scale topography. In contrast, the stratospheric cross-mountain wind component is too weak to trap similar high-order modes with crest-parallel orientation. 
    more » « less
  2. Abstract On 8 April 2024, a total solar eclipse overpassed Texas in the southern portion of the United States. To monitor the impact of the total solar eclipse, a group of students from Texas A&M University–Corpus Christi developed two weather balloon payloads and six ground-based instrument packages using microcontrollers and low-cost sensors. These instrument packages were deployed to six different sites spanning nearly 600 km along the total eclipse path from the Mexican border to North Texas. During the total eclipse, air temperature decreased, and relative humidity increased consistently at all six stations due to the reduction in sensible heating. The dewpoint temperatures decreased at the near surface at all sites likely due to the reduction in evaporation. Five of the six ground stations observed a slight dampening of the wind speed, and two of the six stations recorded significant counterclockwise wind shifts. No consistent pattern was observed in the surface vertical electric field at the six ground stations. The two balloon payloads captured the damping of the visible and ultraviolet (UV) radiation in the upper troposphere and lower stratosphere throughout the event. Though a slight decrease in both temperature and ozone in the lower stratosphere was observed after the totality, it is difficult to determine the impact from the eclipse on the ozone mixing ratio and dynamics in the lower stratosphere from only a few vertical profiles. For the students who participated, this field campaign has provided invaluable experiences in instrumentation, fieldwork, and data collection. 
    more » « less
  3. Abstract Observations during 12 January 2016 revealed a series of events of significant gravity wave (GW) activity over Europe. Analysis of derived temperatures from the Atmospheric InfraRed Sounder (AIRS) provides insight into the sources of these GWs, and include a new observation of stratosphere polar night jet (PNJ) generated GWs. Mountain waves were present during this time as well over the French Alps and the Carpathian Mountains and had maximum temperature perturbations,T′, as large as 27 K over the French Alps. Further investigation of the mountain waves that demonstrated their presence in the stratosphere was determined not only by stratospheric conditions but also by strong winds in the troposphere and at the surface. GWs generated in the stratosphere by the PNJ had maximumT′ of 7 K. These observations demonstrate multiple sources of GWs during a dynamically active period and implicate the role of the PNJ in both the vertical propagation of GWs generated in the troposphere and the generation of GWs from the PNJ itself. 
    more » « less
  4. Abstract During 30 September to 9 October 2016, Hurricane Matthew traversed the Caribbean Sea to the east coast of the United States. During its period of greatest intensity, in the central Caribbean, Matthew excited a large number of concentric gravity waves (GWs or CGWs). In this paper, we report on hurricane‐generated CGWs observed in both the stratosphere and mesosphere from spaceborne satellites and in the ionosphere by ground Global Positioning System receivers. We found CGWs with horizontal wavelengths of ~200–300 km in the stratosphere (height of ~30–40 km) and in the airglow layer of the mesopause (height of ~85–90 km), and we found concentric traveling ionospheric disturbances (TIDs or CTIDs) with horizontal wavelengths of ~250–350 km in the ionosphere (height of ~100–400 km). The observed TIDs lasted for more than several hours on 1, 2, and 7 October 2016. We also briefly discuss the vertical and horizontal propagation of the Hurricane Matthew‐induced GWs and TIDs. This study shows that Hurricane Matthew induced significant dynamical coupling between the troposphere and the entire middle and upper atmosphere via GWs. It is the first comprehensive satellite analysis of gravity wave propagation generated by hurricane event from the troposphere through the stratosphere and mesosphere into the ionosphere. 
    more » « less
  5. Abstract Oblique propagation of gravity waves (GWs) refers to the latitudinal propagation (or vertical propagation away from their source) from the low‐latitude troposphere to the polar mesosphere. This propagation is not included in current gravity wave parameterization schemes, but may be an important component of the global dynamical structure. Previous studies have revealed a high correlation between observations of GW pseudomomentum flux (GWMF) from monsoon convection and Polar Mesospheric Clouds (PMCs) in the northern hemisphere. In this work, we report on data and model analysis of the effects of stratospheric sudden warmings (SSWs) in the northern hemisphere, on the oblique propagation of GWs from the southern hemisphere tropics, which in turn influence PMCs in the southern summer mesosphere. In response to SSWs, the propagation of GWs at the midlatitude winter hemisphere is enhanced. This enhancement appears to be slanted toward the equator with increasing altitude and follows the stratospheric eastward jet. The oblique propagation of GWs from the southern monsoon regions tends to start at higher altitudes with a sharper poleward slanted structure toward the summer mesosphere. The correlation between PMCs in the summer southern hemisphere and the zonal GWMF from 50°N to 50°S exhibits a pattern of high‐correlation coefficients that connects the winter stratosphere with the summer mesosphere, indicating the influence of Interhemispheric Coupling mechanism. Temperature and wind anomalies suggest that the dynamics in the winter hemisphere can influence the equatorial region, which in turn, can influence the oblique propagation of monsoon GWs. 
    more » « less