Experimental demonstrations of modified chemical structure and reactivity under strong light–matter coupling have spurred theoretical and computational efforts to uncover underlying mechanisms. Ab initio cavity quantum electrodynamics (QED) combines quantum chemistry with cavity QED to investigate these phenomena in detail. Unitary transformations of ab initio cavity QED Hamiltonians have been used to make them more computationally tractable. We analyze one such transformation, the coherent state transformation, using perturbation theory. Applying perturbation theory up to third order for ground state energies and potential energy surfaces of several molecular systems under electronic strong coupling, we show that the coherent state transformation yields better agreement with exact ground state energies. We examine one specific case using perturbation theory up to ninth order and find that coherent state transformation performs better up to fifth order but converges more slowly to the exact ground state energy at higher orders. In addition, we apply perturbation theory up to second order for cavity mode states under bilinear coupling, elucidating how the coherent state transformation accelerates the convergence of the photonic subspace toward the complete basis limit and renders molecular ion energies origin invariant. These findings contribute valuable insights into computational advantages of the coherent state transformation in the context of ab initio cavity quantum electrodynamics methods.
This content will become publicly available on November 7, 2025
Molecules under strong or ultra-strong light–matter coupling present an intriguing route to modify chemical structure, properties, and reactivity. A rigorous theoretical treatment of such systems requires handling matter and photon degrees of freedom on an equal quantum mechanical footing. In the regime of molecular electronic strong or ultra-strong coupling to one or a few molecules, it is desirable to treat the molecular electronic degrees of freedom using the tools of ab initio quantum chemistry, yielding an approach referred to as ab initio cavity quantum electrodynamics (ai-QED), where the photon degrees of freedom are treated at the level of cavity QED. We analyze two complementary approaches to ai-QED: (1) a parameterized ai-QED, a two-step approach where the matter degrees of freedom are computed using existing electronic structure theories, enabling the construction of rigorous ai-QED Hamiltonians in a basis of many-electron eigenstates, and (2) self-consistent ai-QED, a one-step approach where electronic structure methods are generalized to include coupling between electronic and photon degrees of freedom. Although these approaches are equivalent in their exact limits, we identify a disparity between the projection of the two-body dipole self-energy operator that appears in the parameterized approach and its exact counterpart in the self-consistent approach. We provide a theoretical argument that this disparity resolves only under the limit of a complete orbital basis and a complete many-electron basis for the projection. We present numerical results highlighting this disparity and its resolution in a particularly simple molecular system of helium hydride cation, where it is possible to approach these two complete basis limits simultaneously. In this same helium hydride system, we examine and compare the practical issue of the computational cost required to converge each approach toward the complete orbital and many-electron bases limit. Finally, we assess the aspect of photonic convergence for polar and charged species, finding comparable behavior between parameterized and self-consistent approaches.
more » « less- PAR ID:
- 10558032
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 161
- Issue:
- 17
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cavity QED experiments are natural hosts for non-equilibrium phases of matter supported by photon-mediated interactions. In this work, we consider a cavity QED simulation of the BCS model of superfluidity, by studying regimes where the cavity photons act as dynamical degrees of freedom instead of mere mediators of the interaction via virtual processes. We find an enhancement of long time coherence following a quench whenever the cavity frequency is tuned into resonance with the atoms. We discuss how this is equivalent to enhancement of non-equilibrium superfluidity and highlight similarities to an analogous phenomena recently studied in solid state quantum optics. We also discuss the conditions for observing this enhanced resonant pairing in experiments by including the effect of photon losses and inhomogeneous coupling in our analysis.more » « less
-
Strong coupling between light and elementary excitations is emerging as a powerful tool to engineer the properties of solid-state systems. Spin-correlated excitations that couple strongly to optical cavities promise control over collective quantum phenomena such as magnetic phase transitions, but their suitable electronic resonances are yet to be found. Here, we report strong light–matter coupling in NiPS3, a van der Waals antiferromagnet with highly correlated electronic degrees of freedom. A previously unobserved class of polaritonic quasiparticles emerges from the strong coupling between its spin-correlated excitons and the photons inside a microcavity. Detailed spectroscopic analysis in conjunction with a microscopic theory provides unique insights into the origin and interactions of these exotic magnetically coupled excitations. Our work introduces van der Waals magnets to the field of strong light–matter physics and provides a path towards the design and control of correlated electron systems via cavity quantum electrodynamics.more » « less
-
A time‐convolutionless master equation approach for computing state‐to‐state rates was developed in which the coupling between states depends on the nuclear coordinates. This approach incorporates a fully quantum‐mechanical treatment of both the nuclear and electronic degrees of freedom and recovers the well‐known Marcus expression in the semiclassical limit. A significant breakthrough was made in using this approach by tying it to a fully ab initio quantum chemical approach for determining the diabatic states and electron‐phonon coupling terms, allowing unprecedented accuracy and utility for computing state‐to‐state electronic transition rates. The Weinstein group at the University of Sheffield reported recently upon a series of donor‐bridge‐acceptor (DBA) molecular triads whose electron‐transfer (ET) pathways can be radically changed by infrared light excitation of specific intramolecular vibrations. Once the diabatic states and couplings are determined, the TCLME approach is used to compute the time‐correlation functions and state‐to‐state golden‐rule rates.more » « less
-
We study the problem of two-photon routing in waveguide QED ladders where a few two-level quantum emitters (QEs) are simultaneously coupled with two chiral waveguides. We analyze the routing probability in two regimes, namely, under a purely plane wave approximation (scattering case) and in the presence of photon-photon bound state formation. Within the scattering case, we examine the two-photon routing in the presence of up to five QEs, considering two possibilities separately: ideal-symmetric coupling and the critical coupling scenario. We examine the photon routing up to the two QEs for the bound state situation and compare the photon redirection efficiency with the corresponding scattering case. Our findings show the potential of utilizing chiral light-matter interactions in multi-photon and multi-emitter-based quantum networking protocols where interlinking among spatially distant nodes is required.