skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sublimation of Snow
Abstract Snow is a vital part of water resources, and sublimation may remove 10%–90% of snowfall from the system. To improve our understanding of the physics that govern sublimation rates, as well as how those rates might change with the climate, we deployed an array of four towers with over 100 instruments from NCAR’s Integrated Surface Flux System from November 2022 to June 2023 in the East River watershed, Colorado, in conjunction with the U.S. Department of Energy’s Surface Atmosphere Integrated Field Laboratory (SAIL) and the National Oceanic and Atmospheric Administration (NOAA)’s Study of Precipitation, the Lower Atmosphere and Surface for Hydrometeorology (SPLASH) campaigns. Mass balance observations, snow pits, particle flux sensors, and terrestrial lidar scans of the evolving snowfield demonstrated how blowing snow influences sublimation rates, which we quantified with latent heat fluxes measured by eddy-covariance systems at heights 1–20 m above the snow surface. Detailed temperature profiles at finer resolutions highlighted the role of the stable boundary layer. Four-stream radiometers indicated the important role of changing albedo in the energy balance and its relationship to water vapor losses. Collectively, these observations span scales from seconds to seasons, from boundary layer turbulence to valley circulation to mesoscale meteorology. We describe the field campaign, highlights in the observations, and outreach and education products we are creating to facilitate cross-disciplinary dialogue and convey relevant findings to those seeking to better understand Colorado River snow and streamflow.  more » « less
Award ID(s):
2139836
PAR ID:
10558088
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
AMS
Date Published:
Journal Name:
Bulletin of the American Meteorological Society
Volume:
105
Issue:
6
ISSN:
0003-0007
Page Range / eLocation ID:
E975 to E990
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Snow cover plays a key role in the water and energy budgets over cold regions. Understanding and parameterizing water and heat exchange over snow surfaces in hydrologic models remains a major challenge. An innovative approach based on the theory of maximum entropy production (MEP) was developed for modeling energy budgets for snow-covered surfaces. This study generalizes the MEP model to simulate surface water vapor (latent heat) fluxes over an entire snowpack lifecycle, including snow accumulation and melting during the early growing season. The expanded MEP model combines soil evaporation, canopy transpiration, and snow sublimation to evaluate snow water loss during the lifecycle of the snowpack. Two hypotheses are tested: (1) sublimation becomes negligible during snowmelt when snowpack is isothermal (0°C) and (2) transpiration is progressively activated as a function of the air temperature during vegetation awakening. The proposed approach is shown to be effective for modeling the total surface water vapor fluxes over the snowpack's lifecycle. Both the hypotheses are supported by field observations. 
    more » « less
  2. Abstract The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) was a yearlong expedition supported by the icebreakerR/V Polarstern, following the Transpolar Drift from October 2019 to October 2020. The campaign documented an annual cycle of physical, biological, and chemical processes impacting the atmosphere-ice-ocean system. Of central importance were measurements of the thermodynamic and dynamic evolution of the sea ice. A multi-agency international team led by the University of Colorado/CIRES and NOAA-PSL observed meteorology and surface-atmosphere energy exchanges, including radiation; turbulent momentum flux; turbulent latent and sensible heat flux; and snow conductive flux. There were four stations on the ice, a 10 m micrometeorological tower paired with a 23/30 m mast and radiation station and three autonomous Atmospheric Surface Flux Stations. Collectively, the four stations acquired ~928 days of data. This manuscript documents the acquisition and post-processing of those measurements and provides a guide for researchers to access and use the data products. 
    more » « less
  3. This study evaluates the simulation of wintertime (15 October, 2019, to 15 March, 2020) statistics of the central Arctic near-surface atmosphere and surface energy budget observed during the MOSAiC campaign with short-term forecasts from 7 state-of-the-art operational and experimental forecast systems. Five of these systems are fully coupled ocean-sea ice-atmosphere models. Forecast systems need to simultaneously simulate the impact of radiative effects, turbulence, and precipitation processes on the surface energy budget and near-surface atmospheric conditions in order to produce useful forecasts of the Arctic system. This study focuses on processes unique to the Arctic, such as, the representation of liquid-bearing clouds at cold temperatures and the representation of a persistent stable boundary layer. It is found that contemporary models still struggle to maintain liquid water in clouds at cold temperatures. Given the simple balance between net longwave radiation, sensible heat flux, and conductive ground flux in the wintertime Arctic surface energy balance, a bias in one of these components manifests as a compensating bias in other terms. This study highlights the different manifestations of model bias and the potential implications on other terms. Three general types of challenges are found within the models evaluated: representing the radiative impact of clouds, representing the interaction of atmospheric heat fluxes with sub-surface fluxes (i.e., snow and ice properties), and representing the relationship between stability and turbulent heat fluxes. 
    more » « less
  4. Abstract The Colorado River Basin is a hydrologic river network that directs runoff from rain and snow falling on mountains, primarily in Colorado and Wyoming, to the Colorado River Delta in Mexico. Over the last century, in response to basin‐wide water shortages, legal agreements between stakeholders in seven U.S. states and Mexico, hydrologic flows from users on the main stem of the river have been reallocated to junior water rights holders. Municipalities, businesses, farmers, and households utilize the Colorado River water to produce and trade valuable, water‐derived goods and services, which effectively reallocates water through a continually adapting, boundary‐free economic river network providing indirect access to virtual Colorado River water. We conceptualize the Colorado River Basin as a multiplex network comprised of interdependent natural flow networks, direct (infrastructural) flow networks, and indirect (virtual) flow networks. Using this reframing, we quantify the total hydrosocial impact of the Drought Contingency Plan (DCP) on Lower Basin states. For each Mm3of water reduced through the DCP, Arizona, Nevada, and California lose an additional 0.42–0.43 Mm3, 0.33–0.51 Mm3, and 1.06–1.10 Mm3of virtual water flow, respectively. Hence, the DCP will require Arizona, Nevada, and Southern California to restructure how they use water, relying less on direct and indirect consumption of the Colorado River water and finding more indirect water sources outside that basin. 
    more » « less
  5. Abstract Snow plays an essential role in the Arctic as the interface between the sea ice and the atmosphere. Optical properties, thermal conductivity and mass distribution are critical to understanding the complex Arctic sea ice system’s energy balance and mass distribution. By conducting measurements from October 2019 to September 2020 on the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, we have produced a dataset capturing the year-long evolution of the physical properties of the snow and surface scattering layer, a highly porous surface layer on Arctic sea ice that evolves due to preferential melt at the ice grain boundaries. The dataset includes measurements of snow during MOSAiC. Measurements included profiles of depth, density, temperature, snow water equivalent, penetration resistance, stable water isotope, salinity and microcomputer tomography samples. Most snowpit sites were visited and measured weekly to capture the temporal evolution of the physical properties of snow. The compiled dataset includes 576 snowpits and describes snow conditions during the MOSAiC expedition. 
    more » « less