Abstract In the Arctic, winter soil temperatures exert strong control over mean annual soil temperature and winter CO2emissions. In tundra ecosystems there is evidence that plant canopy influences on snow accumulation alter winter soil temperatures. By comparison, there has been relatively little research examining the impacts of heterogeneity in boreal forest cover on soil temperatures. Using seven years of data from six sites in northeastern Siberia that vary in stem density we show that snow-depth and forest canopy cover exert equally strong control on cumulative soil freezing degrees days (FDDsoil). Together snow depth and canopy cover explain approximately 75% of the variance in linear models of FDDsoiland freezingn-factors (nf; calculated as the quotient of FDDsoiland FDDair), across sites and years. Including variables related to air temperature, or antecedent soil temperatures does not substantially improve models. The observed increase in FDDsoilwith canopy cover suggests that canopy interception of snow or thermal conduction through trees may be important for winter soil temperature dynamics in forested ecosystems underlain by continuous permafrost. Our results imply that changes in Siberian larch forest cover that arise from climate warming or fire regime changes may have important impacts on winter soil temperature dynamics. 
                        more » 
                        « less   
                    This content will become publicly available on May 5, 2026
                            
                            Sublimation measurements of tundra and taiga snowpack in Alaska
                        
                    
    
            Abstract. Snow sublimation plays a fundamental role in the winter water balance. To date, few studies have quantified sublimation in tundra and boreal forest snow by direct measurements. Continuous latent heat data collected with eddy covariance (EC) measurements from 2010–2021 were used to calculate snow sublimation at six locations in northern Alaska: three Arctic tundra sites at distinct topographical and vegetation communities in the Imnavait Creek watershed on the North Slope underlain by continuous permafrost, and three lowland boreal forest/taiga sites in discontinuous permafrost in interior Alaska near Fairbanks. Mean surface sublimation rates range from 0.08–0.15 mm d−1 and 15–27 mm yr−1 at the six sites, representing, on average, 21 % of the measured solid precipitation and 8 %–16 % of the cumulative annual water vapor flux to the atmosphere (evaporation plus sublimation). The mean daily sublimation rates of the lowland boreal forest sites are higher than those of the tundra sites, but the longer snow cover period of the tundra sites leads to greater mean annual sublimation rates. We examined the potential controls, drivers, and trends of the sublimation rates by using meteorological data collected in conjunction with EC measurements. This research improves our understanding of how site conditions affect sublimation rates and highlights the fact that sublimation is a substantial component of the winter hydrologic cycle. In addition, the study contributes to the sparse literature on tundra and boreal sublimation measurements, and the measured rates are comparable to sublimation estimates in other northern climates. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10614671
- Editor(s):
- na
- Publisher / Repository:
- Copernicus Publications on behalf of the European Geosciences Union
- Date Published:
- Journal Name:
- The Cryosphere
- Edition / Version:
- 1
- Volume:
- 19
- Issue:
- 5
- ISSN:
- 1994-0424
- Page Range / eLocation ID:
- 1739 to 1755
- Subject(s) / Keyword(s):
- n/a
- Format(s):
- Medium: X Size: 3 MB Other: pdf
- Size(s):
- 3 MB
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Background The Drought Code (DC) of the Canadian Fire Weather Index System (CFWIS) has been intuitively regarded by fire managers in Alaska, USA, as poorly representing the moisture content in the forest floor in lowland taiga forests on permafrost soils. Aims The aim of this study was to evaluate the DC using its own framework of water balance as cumulative additions of daily precipitation and substractions of actual evaporation. Methods We used eddy covariance measurements (EC) from three flux towers in Interior Alaska as a benchmark of natural evaporation. Key results The DC water balance model overpredicted drought for all 14 site-years that we analysed. Errors in water balance cumulated to 109 mm by the end of the season, which was 54% of the soil water storage capacity of the DC model. Median daily water balance was 6.3 times lower than that measured by EC. Conclusions About half the error in the model was due to correction of precipitation for canopy effects. The other half was due to dependence of the actual evaporation rate on the proportional ‘fullness’ of soil water storage in the DC model. Implications Fire danger situational awareness is improved by ignoring the DC in the CFWIS for boreal forests occurring on permafrost.more » « less
- 
            This dataset contains water quality measurements and snow and ice data from Alaskan beaver ponds collected during the winter as part of the Arctic Beaver Observation Network and NSF ANS #1850578. The Arctic Beaver Observation Network is a 5-year project (2021-2026) funded by the National Science Foundation. The natural science part of the project uses remote sensing to observe the progress and impacts of beaver engineering in the Arctic, starting in Alaska and extending into Canada and Eurasia. The project also establishes field sites at tundra beaver ponds to study the implications of beaver engineering on hydrology and permafrost, as well as pond evolution documented using Unmanned Aerial Systems (UAS). Remote sensing work will map beaver ponds over time. Field measurements at tundra beaver ponds are made in August and late March. Data generated by field measurements include water level and temperature from pressure-transducers, subsurface imaging from ground-penetrating radar, sonar measurements for beaver pond bathymetry, tabular data associated with water quality measurements, and ice thickness and water depth (in winter). Data is also posted from UAS surveys: annual visible and multi-spectral surveys, as well as snow depth.more » « less
- 
            Persistent net release of carbon dioxide and methane from an Alaskan lowland boreal peatland complexAbstract Permafrost degradation in peatlands is altering vegetation and soil properties and impacting net carbon storage. We studied four adjacent sites in Alaska with varied permafrost regimes, including a black spruce forest on a peat plateau with permafrost, two collapse scar bogs of different ages formed following thermokarst, and a rich fen without permafrost. Measurements included year‐round eddy covariance estimates of net carbon dioxide (CO2), mid‐April to October methane (CH4) emissions, and environmental variables. From 2011 to 2022, annual rainfall was above the historical average, snow water equivalent increased, and snow‐season duration shortened due to later snow return. Seasonally thawed active layer depths also increased. During this period, all ecosystems acted as slight annual sources of CO2(13–59 g C m−2 year−1) and stronger sources of CH4(11–14 g CH4 m−2from ~April to October). The interannual variability of net ecosystem exchange was high, approximately ±100 g C m−2 year−1, or twice what has been previously reported across other boreal sites. Net CO2release was positively related to increased summer rainfall and winter snow water equivalent and later snow return. Controls over CH4emissions were related to increased soil moisture and inundation status. The dominant emitter of carbon was the rich fen, which, in addition to being a source of CO2, was also the largest CH4emitter. These results suggest that the future carbon‐source strength of boreal lowlands in Interior Alaska may be determined by the area occupied by minerotrophic fens, which are expected to become more abundant as permafrost thaw increases hydrologic connectivity. Since our measurements occur within close proximity of each other (≤1 km2), this study also has implications for the spatial scale and data used in benchmarking carbon cycle models and emphasizes the necessity of long‐term measurements to identify carbon cycle process changes in a warming climate.more » « less
- 
            This dataset contains permafrost thaw depth measurements at Alaskan beaver ponds collected as part of the Arctic Beaver Observation Network and NSF ANS #1850578. The Arctic Beaver Observation Network is a 5-year project (2021-2026) funded by the National Science Foundation. The natural science part of the project uses remote sensing to observe the progress and impacts of beaver engineering in the Arctic, starting in Alaska and extending into Canada and Eurasia. The project also establishes field sites at tundra beaver ponds to study the implications of beaver engineering on hydrology and permafrost, as well as pond evolution documented using Unmanned Aerial Systems (UAS). Remote sensing work will map beaver ponds over time. Field measurements at tundra beaver ponds are made in August and late March. Data generated by field measurements include water level and temperature from pressure-transducers, subsurface imaging from ground-penetrating radar, sonar measurements for beaver pond bathymetry, tabular data associated with water quality measurements, and ice thickness and water depth (in winter). Data is also posted from UAS surveys: annual visible and multi-spectral surveys, as well as snow depth. This dataset comprises thaw depth measurements along transects near beaver ponds, to document permafrost impacts over time.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
