For a given class of materials, universal deformations are those deformations that can be maintained in the absence of body forces and by applying solely boundary tractions. For inhomogeneous bodies, in addition to the universality constraints that determine the universal deformations, there are extra constraints on the form of the material inhomogeneities—universal inhomogeneity constraints. Those inhomogeneities compatible with the universal inhomogeneity constraints are called universal inhomogeneities. In a Cauchy elastic solid, stress at a given point and at an instance of time is a function of strain at that point and that exact moment in time, without any dependence on prior history. A Cauchy elastic solid does not necessarily have an energy function, i.e. Cauchy elastic solids are, in general, non-hyperelastic (or non-Green elastic). In this paper, we characterize universal deformations in both compressible and incompressible inhomogeneous isotropic Cauchy elasticity. As Cauchy elasticity includes hyperelasticity, one expects the universal deformations of Cauchy elasticity to be a subset of those of hyperelasticity both in compressible and incompressible cases. It is also expected that the universal inhomogeneity constraints to be more stringent than those of hyperelasticity, and hence, the set of universal inhomogeneities to be smaller than that of hyperelasticity. We prove the somewhat unexpected result that the sets of universal deformations of isotropic Cauchy elasticity and isotropic hyperelasticity are identical, in both the compressible and incompressible cases. We also prove that their corresponding universal inhomogeneities are identical as well.
more »
« less
Spectral asymptotics on stationary space-times
We review our recent relativistic generalization of the Gutzwiller–Duistermaat–Guillemin trace formula and Weyl law on globally hyperbolic stationary space-times with compact Cauchy hypersurfaces. We also discuss anticipated generalizations to non-compact Cauchy hypersurface cases.
more »
« less
- Award ID(s):
- 1810747
- PAR ID:
- 10558109
- Publisher / Repository:
- White Rose
- Date Published:
- Journal Name:
- Reviews in Mathematical Physics
- Volume:
- 33
- Issue:
- 01
- ISSN:
- 0129-055X
- Page Range / eLocation ID:
- 2060007
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract From a unified vision of vector valued solutions in weighted Banach spaces, this paper establishes the existence and uniqueness for space homogeneous Boltzmann bi-linear systems with conservative collisional forms arising in complex gas dynamical structures. This broader vision is directly applied to dilute multi-component gas mixtures composed of both monatomic and polyatomic gases. Such models can be viewed as extensions of scalar Boltzmann binary elastic flows, as much as monatomic gas mixtures with disparate masses and single polyatomic gases, providing a unified approach for vector valued solutions in weighted Banach spaces. Novel aspects of this work include developing the extension of a general ODE theory in vector valued weighted Banach spaces, precise lower bounds for the collision frequency in terms of the weighted Banach norm, energy identities, angular or compact manifold averaging lemmas which provide coerciveness resulting into global in time stability, a new combinatorics estimate forp-binomial forms producing sharper estimates for thek-moments of bi-linear collisional forms. These techniques enable the Cauchy problem improvement that resolves the model with initial data corresponding to strictly positive and bounded initial vector valued mass and total energy, in addition to only a$$2^+$$ moment determined by the hard potential rates discrepancy, a result comparable in generality to the classical Cauchy theory of the scalar homogeneous Boltzmann equation.more » « less
-
ABSTRACT We introduce a novel meta-analysis framework to combine dependent tests under a general setting, and utilize it to synthesize various microbiome association tests that are calculated from the same dataset. Our development builds upon the classical meta-analysis methods of aggregating P-values and also a more recent general method of combining confidence distributions, but makes generalizations to handle dependent tests. The proposed framework ensures rigorous statistical guarantees, and we provide a comprehensive study and compare it with various existing dependent combination methods. Notably, we demonstrate that the widely used Cauchy combination method for dependent tests, referred to as the vanilla Cauchy combination in this article, can be viewed as a special case within our framework. Moreover, the proposed framework provides a way to address the problem when the distributional assumptions underlying the vanilla Cauchy combination are violated. Our numerical results demonstrate that ignoring the dependence among the to-be-combined components may lead to a severe size distortion phenomenon. Compared to the existing P-value combination methods, including the vanilla Cauchy combination method and other methods, the proposed combination framework is flexible and can be adapted to handle the dependence accurately and utilizes the information efficiently to construct tests with accurate size and enhanced power. The development is applied to the microbiome association studies, where we aggregate information from multiple existing tests using the same dataset. The combined tests harness the strengths of each individual test across a wide range of alternative spaces, enabling more efficient and meaningful discoveries of vital microbiome associations.more » « less
-
Abstract In classical general relativity, the values of fields on spacetime are uniquely determined by their values at an initial time within the domain of dependence of this initial data surface. However, it may occur that the spacetime under consideration extends beyond this domain of dependence, and fields, therefore, are not entirely determined by their initial data. This occurs, for example, in the well-known (maximally) extended Reissner–Nordström or Reissner–Nordström–deSitter (RNdS) spacetimes. The boundary of the region determined by the initial data is called the ‘Cauchy horizon.’ It is located inside the black hole in these spacetimes. The strong cosmic censorship conjecture asserts that the Cauchy horizon does not, in fact, exist in practice because the slightest perturbation (of the metric itself or the matter fields) will become singular there in a sufficiently catastrophic way that solutions cannot be extended beyond the Cauchy horizon. Thus, if strong cosmic censorship holds, the Cauchy horizon will be converted into a ‘final singularity,’ and determinism will hold. Recently, however, it has been found that, classically this is not the case in RNdS spacetimes in a certain range of mass, charge, and cosmological constant. In this paper, we consider a quantum scalar field in RNdS spacetime and show that quantum theory comes to the rescue of strong cosmic censorship. We find that for any state that is nonsingular (i.e., Hadamard) within the domain of dependence, the expected stress-tensor blows up with affine parameter,V, along a radial null geodesic transverse to the Cauchy horizon asTVV∼C/V2withCindependent of the state andC≠ 0 generically in RNdS spacetimes. This divergence is stronger than in the classical theory and should be sufficient to convert the Cauchy horizon into a singularity through which the spacetime cannot be extended as a (weak) solution of the semiclassical Einstein equation. This behavior is expected to be quite general, although it is possible to haveC= 0 in certain special cases, such as the BTZ black hole.more » « less
-
null (Ed.)A bstract The gravitational dual to the grand canonical ensemble of a large N holographic theory is a charged black hole. These spacetimes — for example Reissner- Nordström-AdS — can have Cauchy horizons that render the classical gravitational dynamics of the black hole interior incomplete. We show that a (spatially uniform) deformation of the CFT by a neutral scalar operator generically leads to a black hole with no inner horizon. There is instead a spacelike Kasner singularity in the interior. For relevant deformations, Cauchy horizons never form. For certain irrelevant deformations, Cauchy horizons can exist at one specific temperature. We show that the scalar field triggers a rapid collapse of the Einstein-Rosen bridge at the would-be Cauchy horizon. Finally, we make some observations on the interior of charged dilatonic black holes where the Kasner exponent at the singularity exhibits an attractor mechanism in the low temperature limit.more » « less
An official website of the United States government

