skip to main content


This content will become publicly available on December 1, 2025

Title: The unique biogeochemical role of carbonate-associated organic matter in a subtropical seagrass meadow
Abstract

The particulate organic matter buried in carbonate-rich seagrass ecosystems is an important blue carbon reservoir. While carbonate sediments are affected by alkalinity produced or consumed in seagrass-mediated biogeochemical processes, little is known about the corresponding impact on organic matter. A portion of particulate organic matter is carbonate-associated organic matter. Here, we explore its biogeochemistry in a carbonate seagrass meadow in central Florida Bay, USA. We couple inorganic stable isotope analyses (δ34S, δ18O) with a molecular characterization of dissolved and carbonate associated organic matter (21 tesla Fourier-transform ion cyclotron resonance mass spectrometry). We find that carbonate-associated molecular formulas are highly sulfurized compared to surface water dissolved organic matter, with multiple sulfurization pathways at play. Furthermore, 97% of the formula abundance of surface water dissolved organic matter is shared with carbonate-associated organic matter, indicating connectivity between these two pools. We estimate that 9.2% of the particulate organic matter is carbonate-associated, and readily exchangeable with the broader aquatic system as the sediment dissolves and reprecipitates.

 
more » « less
Award ID(s):
2025954
PAR ID:
10558219
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
5
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report marine dissolved organic carbon (DOC) concentrations, and DOC Δ14C and δ13C in seawater collected from the West Indian Ocean during the GO‐SHIP I07N cruise in 2018. We find bomb14C in DOC from the upper 1,000 m of the water column. There is no significant change in ∆14C of DOC in deep water northward, unlike that of dissolved inorganic carbon (DIC), suggesting that transport of deep water northward is not controlling the14C age of DOC. Variability of DOC ∆14C, including high values in the deep waters, is more pronounced than in other oceans, suggesting that dissolution of surface derived particulate organic carbon is a source of modern carbon to deep DOC in the West Indian Ocean. Low δ13C are present at two of the five stations studied, suggesting a source of low δ13C DOC, or additional microbial utilization of deep DOC.

     
    more » « less
  2. Abstract

    Organic and inorganic stable isotopes of lacustrine carbonate sediments are commonly used in reconstructions of ancient terrestrial ecosystems and environments. Microbial activity and local hydrological inputs can alter porewater chemistry (e.g., pH, alkalinity) and isotopic composition (e.g., δ18Owater, δ13CDIC), which in turn has the potential to impact the stable isotopic compositions recorded and preserved in lithified carbonate. The fingerprint these syngenetic processes have on lacustrine carbonate facies is yet unknown, however, and thus, reconstructions based on stable isotopes may misinterpret diagenetic records as broader climate signals. Here, we characterize geochemical and stable isotopic variability of carbonate minerals, organic matter, and water within one modern lake that has known microbial influences (e.g., microbial mats and microbialite carbonate) and combine these data with the context provided by 16S rRNA amplicon sequencing community profiles. Specifically, we measure oxygen, carbon, and clumped isotopic compositions of carbonate sediments (δ18Ocarb, δ13Ccarb, ∆47), as well as carbon isotopic compositions of bulk organic matter (δ13Corg) and dissolved inorganic carbon (DIC; δ13CDIC) of lake and porewater in Great Salt Lake, Utah from five sites and three seasons. We find that facies equivalent to ooid grainstones provide time‐averaged records of lake chemistry that reflect minimal alteration by microbial activity, whereas microbialite, intraclasts, and carbonate mud show greater alteration by local microbial influence and hydrology. Further, we find at least one occurrence of ∆47isotopic disequilibrium likely driven by local microbial metabolism during authigenic carbonate precipitation. The remainder of the carbonate materials (primarily ooids, grain coatings, mud, and intraclasts) yield clumped isotope temperatures (T(∆47)), δ18Ocarb, and calculated δ18Owaterin isotopic equilibrium with ambient water and temperature at the time and site of carbonate precipitation. Our findings suggest that it is possible and necessary to leverage diverse carbonate facies across one sedimentary horizon to reconstruct regional hydroclimate and evaporation–precipitation balance, as well as identify microbially mediated carbonate formation.

     
    more » « less
  3. Abstract

    Ongoing rapid arctic warming leads to extensive permafrost thaw, which in turn increases the hydrologic connectivity of the landscape by opening up subsurface flow paths. Suspended particulate organic matter (POM) has proven useful to trace permafrost thaw signals in arctic rivers, which may experience higher organic matter loads in the future due to expansion and increasing intensity of thaw processes such as thermokarst and river bank erosion. Here we focus on the Kolyma River watershed in Northeast Siberia, the world's largest watershed entirely underlain by continuous permafrost. To evaluate and characterize the present‐day fluvial release of POM from permafrost thaw, we collected water samples every 4–7 days during the 4‐month open water season in 2013 and 2015 from the lower Kolyma River mainstem and from a small nearby headwater stream (Y3) draining an area completely underlain by Yedoma permafrost (Pleistocene ice‐ and organic‐rich deposits). Concentrations of particulate organic carbon generally followed the hydrograph with the highest concentrations during the spring flood in late May/early June. For the Kolyma River, concentrations of dissolved organic carbon showed a similar behavior, in contrast to the headwater stream, where dissolved organic carbon values were generally higher and particulate organic carbon concentrations lower than for Kolyma. Carbon isotope analysis (δ13C, Δ14C) suggested Kolyma‐POM to stem from both contemporary and older permafrost sources, while Y3‐POM was more strongly influenced by in‐stream production and recent vegetation. Lipid biomarker concentrations (high‐molecular‐weightn‐alkanoic acids andn‐alkanes) did not display clear seasonal patterns, yet implied Y3‐POM to be more degraded than Kolyma‐POM.

     
    more » « less
  4. Abstract

    Lacustrine carbonates are a powerful archive of paleoenvironmental information but are susceptible to post‐depositional alteration. Microbial metabolisms can drive such alteration by changing carbonate saturationin situ, thereby driving dissolution or precipitation. The net impact these microbial processes have on the primary δ18O, δ13C, and Δ47values of lacustrine carbonate is not fully known. We studied the evolution of microbial community structure and the porewater and sediment geochemistry in the upper ~30 cm of sediment from two shoreline sites at Green Lake, Fayetteville, NY over 2 years of seasonal sampling. We linked seasonal and depth‐based changes of porewater carbonate chemistry to microbial community composition, in situ carbon cycling (using δ13C values of carbonate, dissolved inorganic carbon (DIC), and organic matter), and dominant allochems and facies. We interpret that microbial processes are a dominant control on carbon cycling within the sediment, affecting porewater DIC, aqueous carbon chemistry, and carbonate carbon and clumped isotope geochemistry. Across all seasons and sites, microbial organic matter remineralization lowers the δ13C of the porewater DIC. Elevated carbonate saturation states in the sediment porewaters (Ω > 3) were attributed to microbes from groups capable of sulfate reduction, which were abundant in the sediment below 5 cm depth. The nearshore carbonate sediments at Green Lake are mainly composed of microbialite intraclasts/oncoids, charophytes, larger calcite crystals, and authigenic micrite—each with a different origin. Authigenic micrite is interpreted to have precipitated in situ from the supersaturated porewaters from microbial metabolism. The stable carbon isotope values (δ13Ccarb) and clumped isotope values (Δ47) of bulk carbonate sediments from the same depth horizons and site varied depending on both the sampling season and the specific location within a site, indicating localized (μm to mm) controls on carbon and clumped isotope values. Our results suggest that biological processes are a dominant control on carbon chemistry within the sedimentary subsurface of the shorelines of Green Lake, from actively forming microbialites to pore space organic matter remineralization and micrite authigenesis. A combination of biological activity, hydrologic balance, and allochem composition of the sediments set the stable carbon, oxygen, and clumped isotope signals preserved by the Green Lake carbonate sediments.

     
    more » « less
  5. Abstract

    Decomposition of particulate organic matter (POM) plays a key role in the formation of hypoxia in subsurface waters of coastal ocean, yet little is known about the lability and transformation of POM in the hypoxic zone. Suspended particles were collected from surface waters to overlying waters (~30 cm above the sediment‐water interface) along the shelf of northern Gulf of Mexico (nGOM) in late spring/early summer of 2010–2013. Total hydrolyzable amino acids (THAA) and pigments were measured in these particulate samples to trace organic matter lability. The degradation indices, derived from the THAA and chloropigments, were positively correlated with dissolved oxygen (DO) concentrations in the shelf region, suggesting that decomposition of POM contributed greatly to DO utilization. Bacterial degradation appears to be the major pathway for POM decomposition on both inner and mid shelves, while zooplankton grazing played a minor role. POM samples in the overlying water on the inner shelf were the most degraded from the THAA and pigment results, and they also had high C/N ratios (9–14) and depleted δ13C values (−29‰ to −24‰), pointing to a source of terrestrial C3 plant material. This distinct terrestrial signal of POM in the overlying water suggests strong selective degradation of marine‐sourced organic matter, but how the terrestrial organic matter is settled to this layer and its ultimate fate remain unclear. Taken together, these data offer new angles looking into the lability and degradation pathways of POM, and mechanisms of hypoxia formation in coastal waters.

     
    more » « less