 NSFPAR ID:
 10356315
 Date Published:
 Journal Name:
 Frontiers in Physics
 Volume:
 10
 ISSN:
 2296424X
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Discreteparticle simulations of bidisperse shear thickening suspensions are reported. The work considers two packing parameters, the largetosmall particle radius ratio ranging from [Formula: see text] (nearly monodisperse) to [Formula: see text], and the large particle fraction of the total solid loading with values [Formula: see text], 0.5, and 0.85. Particlescale simulations are performed over a broad range of shear stresses using a simulation model for spherical particles accounting for shortrange lubrication forces, frictional interaction, and repulsion between particles. The variation of rheological properties and the maximum packing fraction [Formula: see text] with shear stress [Formula: see text] are reported. At a fixed volume fraction [Formula: see text], bidispersity decreases the suspension relative viscosity [Formula: see text], where [Formula: see text] is the suspension viscosity and [Formula: see text] is the suspending fluid viscosity, over the entire range of shear stresses studied. However, under low shear stress conditions, the suspension exhibits an unusual rheological behavior: the minimum viscosity does not occur as expected at [Formula: see text], but instead decreases with further increase of [Formula: see text] to [Formula: see text]. The second normal stress difference [Formula: see text] acts similarly. This behavior is caused by particles ordering into a layered structure, as is also reflected by the zero slope with respect to time of the meansquare displacement in the velocity gradient direction. The relative viscosity [Formula: see text] of bidisperse ratedependent suspensions can be predicted by a power law linking it to [Formula: see text], [Formula: see text] in both low and high shear stress regimes. The agreement between the power law and experimental data from literature demonstrates that the model captures well the effect of particle size distribution, showing that viscosity roughly collapses onto a single master curve when plotted against the reduced volume fraction [Formula: see text].more » « less

Nearly, all dense suspensions undergo dramatic and abrupt thickening transitions in their flow behavior when sheared at high stresses. Such transitions occur when the dominant interactions between the suspended particles shift from hydrodynamic to frictional. Here, we interpret abrupt shear thickening as a precursor to a rigidity transition and give a complete theory of the viscosity in terms of a universal crossover scaling function from the frictionless jamming point to a rigidity transition associated with friction, anisotropy, and shear. Strikingly, we find experimentally that for two different systems—cornstarch in glycerol and silica spheres in glycerol—the viscosity can be collapsed onto a single universal curve over a wide range of stresses and volume fractions. The collapse reveals two separate scaling regimes due to a crossover between frictionless isotropic jamming and frictional shear jamming, with different critical exponents. The materialspecific behavior due to the microscale particle interactions is incorporated into a scaling variable governing the proximity to shear jamming, that depends on both stress and volume fraction. This reformulation opens the door to importing the vast theoretical machinery developed to understand equilibrium critical phenomena to elucidate fundamental physical aspects of the shear thickening transition.

Weitz, David (Ed.)
A hallmark of concentrated suspensions is nonNewtonian behavior, whereby the viscosity increases dramatically once a characteristic shear rate or stress is exceeded. Such strong shear thickening is thought to originate from a network of frictional particle–particle contact forces, which forms under sufficiently large stress, evolves dynamically, and adapts to changing loads. While there is much evidence from simulations for the emergence of this network during shear thickening, experimental confirmation has been difficult. Here, we use suspensions of piezoelectric nanoparticles and exploit the strong local stress focusing within the network to activate charge generation. This charging can then be detected in the measured ac conductance and serve as a signature of frictional contact formation. The direct link between stressactivated frictional particle interactions and piezoelectric suspension response is further demonstrated by tracking the emergence of structural memory in the contact network under oscillatory shear and by showing how stressactivated friction can drive mechanotransduction of chemical reactions with nonlinear reaction kinetics. Taken together, this makes the ac conductance of piezoelectric suspensions a sensitive insitu reporter of the micromechanics associated with frictional interactions.

We present a numerical study of noncolloidal spherical and rigid particles suspended in Newtonian, shear thinning and shear thickening fluids employing an immersed boundary method. We consider a linear Couette configuration to explore a wide range of solid volume fractions ( $0.1\leqslant \unicode[STIX]{x1D6F7}\leqslant 0.4$ ) and particle Reynolds numbers ( $0.1\leqslant Re_{p}\leqslant 10$ ). We report the distribution of solid and fluid phase velocity and solid volume fraction and show that close to the boundaries inertial effects result in a significant slip velocity between the solid and fluid phase. The local solid volume fraction profiles indicate particle layering close to the walls, which increases with the nominal $\unicode[STIX]{x1D6F7}$ . This feature is associated with the confinement effects. We calculate the probability density function of local strain rates and compare the latter’s mean value with the values estimated from the homogenisation theory of Chateau et al. ( J. Rheol. , vol. 52, 2008, pp. 489–506), indicating a reasonable agreement in the Stokesian regime. Both the mean value and standard deviation of the local strain rates increase primarily with the solid volume fraction and secondarily with the $Re_{p}$ . The wide spectrum of the local shear rate and its dependency on $\unicode[STIX]{x1D6F7}$ and $Re_{p}$ point to the deficiencies of the mean value of the local shear rates in estimating the rheology of these noncolloidal complex suspensions. Finally, we show that in the presence of inertia, the effective viscosity of these noncolloidal suspensions deviates from that of Stokesian suspensions. We discuss how inertia affects the microstructure and provide a scaling argument to give a closure for the suspension shear stress for both Newtonian and powerlaw suspending fluids. The stress closure is valid for moderate particle Reynolds numbers, $O(Re_{p})\sim 10$ .more » « less

null (Ed.)When a droplet is generated, the ligament connecting the drop to the nozzle thins down and eventually pinches off. Adding solid particles to the liquid phase leads to a more complex dynamic, notably by increasing the shear viscosity. Moreover, it introduces an additional length scale to the system, the diameter of the particles, which eventually becomes comparable to the diameter of the ligament. In this paper, we experimentally investigate the thinning and pinchoff of drops of suspensions with two different sizes of particles. We characterize the thinning for different particle size ratios and different proportions of small particles. Long before the pinchoff, the thinning rate is that of an equivalent liquid whose viscosity is that of the suspension. Later, when the ligament thickness approaches the size of the large particles, the thinning accelerates and leads to an early pinchoff. We explain how the bidisperse particle size distribution lowers the viscosity by making the packing more efficient, which speeds up the thinning. This result can be used to predict the dynamics of droplet formation with bidisperse suspensions.more » « less