skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The occurrence of surface tension gradient discontinuities and zero mobility for Allen–Cahn and curvature flows in periodic media
We construct several examples related to the scaling limits of energy minimizers and gradient flows of surface energy functionals in heterogeneous media. These include both sharp and diffuse interface models. The focus is on two separate but related issues: the regularity of effective surface tensions and the occurrence of zero mobility in the associated gradient flows. On regularity, we build on the 2014 theory of Chambolle, Goldman, and Novaga to show that gradient discontinuities in the surface tension are generic for sharp interface models. In the diffuse interface case, we only show that the laminations by plane-like solutions satisfying the strong Birkhoff property generically are not foliations and do have gaps. On mobility, we construct examples in both the sharp and diffuse interface case where the homogenization scaling limit of theL^2gradient flow is trivial, that is, there is pinning at every direction. In the sharp interface case, these are related to examples previously constructed for forced mean curvature flow in Novaga and Valdinoci's 2011 paper.  more » « less
Award ID(s):
2009286
PAR ID:
10558552
Author(s) / Creator(s):
;
Publisher / Repository:
EMS Press
Date Published:
Journal Name:
Interfaces and Free Boundaries, Mathematical Analysis, Computation and Applications
Volume:
25
Issue:
4
ISSN:
1463-9963
Page Range / eLocation ID:
567 to 631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We provide a complete local well-posedness theory inHsbased Sobolev spaces for the free boundary incompressible Euler equations with zero surface tension on a connected fluid domain. Our well-posedness theory includes: (i) Local well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and the first proof of continuous dependence on the data, all in low regularity Sobolev spaces; (ii) Enhanced uniqueness: Our uniqueness result holds at the level of the Lipschitz norm of the velocity and the$$C^{1,\frac{1}{2}}$$regularity of the free surface; (iii) Stability bounds: We construct a nonlinear functional which measures, in a suitable sense, the distance between two solutions (even when defined on different domains) and we show that this distance is propagated by the flow; (iv) Energy estimates: We prove refined, essentially scale invariant energy estimates for solutions, relying on a newly constructed family of elliptic estimates; (v) Continuation criterion: We give the first proof of a sharp continuation criterion in the physically relevant pointwise norms, at the level of scaling. In essence, we show that solutions can be continued as long as the velocity is in$$L_T^1W^{1,\infty}$$and the free surface is in$$L_T^1C^{1,\frac{1}{2}}$$, which is at the same level as the Beale-Kato-Majda criterion for the boundaryless case; (vi) A novel proof of the construction of regular solutions. Our entire approach is in the Eulerian framework and can be adapted to work in more general fluid domains. 
    more » « less
  2. Abstract In this paper we provide a complete local well-posedness theory for the free boundary relativistic Euler equations with a physical vacuum boundary on a Minkowski background. Specifically, we establish the following results: (i) local well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and continuous dependence on the data; (ii) low regularity solutions: our uniqueness result holds at the level of Lipschitz velocity and density, while our rough solutions, obtained as unique limits of smooth solutions, have regularity only a half derivative above scaling; (iii) stability: our uniqueness in fact follows from a more general result, namely, we show that a certain nonlinear functional that tracks the distance between two solutions (in part by measuring the distance between their respective boundaries) is propagated by the flow; (iv) we establish sharp, essentially scale invariant energy estimates for solutions; (v) a sharp continuation criterion, at the level of scaling, showing that solutions can be continued as long as the velocity is in$$L^1_t Lip$$ L t 1 L i p and a suitable weighted version of the density is at the same regularity level. Our entire approach is in Eulerian coordinates and relies on the functional framework developed in the companion work of the second and third authors on corresponding non relativistic problem. All our results are valid for a general equation of state$$p(\varrho )= \varrho ^\gamma $$ p ( ϱ ) = ϱ γ ,$$\gamma > 1$$ γ > 1
    more » « less
  3. We compute steady planar incompressible flows and wall shapes that maximize the rate of heat transfer ($$Nu$$) between hot and cold walls, for a given rate of viscous dissipation by the flow ($$Pe^2$$), with no-slip boundary conditions at the walls. In the case of no flow, we show theoretically that the optimal walls are flat and horizontal, at the minimum separation distance. We use a decoupled approximation to show that flat walls remain optimal up to a critical non-zero flow magnitude. Beyond this value, our computed optimal flows and wall shapes converge to a set of forms that are invariant except for a$$Pe^{-1/3}$$scaling of horizontal lengths. The corresponding rate of heat transfer$$Nu \sim Pe^{2/3}$$. We show that these scalings result from flows at the interface between the diffusion-dominated and convection-dominated regimes. We also show that the separation distance of the walls remains at its minimum value at large$$Pe$$. 
    more » « less
  4. Abstract Variational implicit solvation models (VISMs) have gained extensive popularity in the molecular-level solvation analysis of biological systems due to their cost-effectiveness and satisfactory accuracy. Central in the construction of VISM is an interface separating the solute and the solvent. However, traditional sharp-interface VISMs fall short in adequately representing the inherent randomness of the solute–solvent interface, a consequence of thermodynamic fluctuations within the solute–solvent system. Given that experimentally observable quantities are ensemble averaged, the computation of the ensemble average solvation energy (EASE)–the averaged solvation energy across all thermodynamic microscopic states–emerges as a key metric for reflecting thermodynamic fluctuations during solvation processes. This study introduces a novel approach to calculating the EASE. We devise two diffuse-interface VISMs: one within the classic Poisson–Boltzmann (PB) framework and another within the framework of size-modified PB theory, accounting for the finite-size effects. The construction of these models relies on a new diffuse interface definition u ( x ) u\left(x), which represents the probability of a point x xfound in the solute phase among all microstates. Drawing upon principles of statistical mechanics and geometric measure theory, we rigorously demonstrate that the proposed models effectively capture EASE during the solvation process. Moreover, preliminary analyses indicate that the size-modified EASE functional surpasses its counterpart based on the classic PB theory across various analytic aspects. Our work is the first step toward calculating EASE through the utilization of diffuse-interface VISM. 
    more » « less
  5. Abstract We study the behavior of solutions to the incompressible 2dEuler equations near two canonical shear flows with critical points, the Kolmogorov and Poiseuille flows, with consequences for the associated Navier–Stokes problems. We exhibit a large family of new, non-trivial stationary states that are arbitrarily close to the Kolmogorov flow on the square torus$$\mathbb {T}^2$$ T 2 in analytic regularity. This situation contrasts strongly with the setting of some monotone shear flows, such as the Couette flow: there the linearized problem exhibits an “inviscid damping” mechanism that leads to relaxation of perturbations of the base flows back to nearby shear flows. Our results show that such a simple description of the long-time behavior is not possible for solutions near the Kolmogorov flow on$$\mathbb {T}^2$$ T 2 . Our construction of the new stationary states builds on a degeneracy in the global structure of the Kolmogorov flow on$$\mathbb {T}^2$$ T 2 , and we also show a lack of correspondence between the linearized description of the set of steady states and its true nonlinear structure. Both the Kolmogorov flow on a rectangular torus and the Poiseuille flow in a channel are very different. We show that the only stationary states near them must indeed be shears, even in relatively low regularity. In addition, we show that this behavior is mirrored closely in the related Navier–Stokes settings: the linearized problems near the Poiseuille and Kolmogorov flows both exhibit an enhanced rate of dissipation. Previous work by us and others shows that this effect survives in the full, nonlinear problem near the Poiseuille flow and near the Kolmogorov flow on rectangular tori, provided that the perturbations lie below a certain threshold. However, we show here that the corresponding result cannot hold near the Kolmogorov flow on$${\mathbb T}^2$$ T 2
    more » « less