Consider two half-spaces
We study the behavior of solutions to the incompressible 2
- Award ID(s):
- 2043024
- NSF-PAR ID:
- 10394858
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Archive for Rational Mechanics and Analysis
- Volume:
- 247
- Issue:
- 1
- ISSN:
- 0003-9527
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract and$$H_1^+$$ in$$H_2^+$$ whose bounding hyperplanes$${\mathbb {R}}^{d+1}$$ and$$H_1$$ are orthogonal and pass through the origin. The intersection$$H_2$$ is a spherical convex subset of the$${\mathbb {S}}_{2,+}^d:={\mathbb {S}}^d\cap H_1^+\cap H_2^+$$ d -dimensional unit sphere , which contains a great subsphere of dimension$${\mathbb {S}}^d$$ and is called a spherical wedge. Choose$$d-2$$ n independent random points uniformly at random on and consider the expected facet number of the spherical convex hull of these points. It is shown that, up to terms of lower order, this expectation grows like a constant multiple of$${\mathbb {S}}_{2,+}^d$$ . A similar behaviour is obtained for the expected facet number of a homogeneous Poisson point process on$$\log n$$ . The result is compared to the corresponding behaviour of classical Euclidean random polytopes and of spherical random polytopes on a half-sphere.$${\mathbb {S}}_{2,+}^d$$ -
Abstract We prove that the Hilbert scheme of
k points on ($${\mathbb {C}}^2$$ ) is self-dual under three-dimensional mirror symmetry using methods of geometry and integrability. Namely, we demonstrate that the corresponding quantum equivariant K-theory is invariant upon interchanging its Kähler and equivariant parameters as well as inverting the weight of the$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ -action. First, we find a two-parameter family$${\mathbb {C}}^\times _\hbar $$ of self-mirror quiver varieties of type A and study their quantum K-theory algebras. The desired quantum K-theory of$$X_{k,l}$$ is obtained via direct limit$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ and by imposing certain periodic boundary conditions on the quiver data. Throughout the proof, we employ the quantum/classical (q-Langlands) correspondence between XXZ Bethe Ansatz equations and spaces of twisted$$l\longrightarrow \infty $$ -opers. In the end, we propose the 3d mirror dual for the moduli spaces of torsion-free rank-$$\hbar $$ N sheaves on with the help of a different (three-parametric) family of type A quiver varieties with known mirror dual.$${\mathbb {P}}^2$$ -
Abstract The elliptic flow
of$$(v_2)$$ mesons from beauty-hadron decays (non-prompt$${\textrm{D}}^{0}$$ was measured in midcentral (30–50%) Pb–Pb collisions at a centre-of-mass energy per nucleon pair$${\textrm{D}}^{0})$$ TeV with the ALICE detector at the LHC. The$$\sqrt{s_{\textrm{NN}}} = 5.02$$ mesons were reconstructed at midrapidity$${\textrm{D}}^{0}$$ from their hadronic decay$$(|y|<0.8)$$ , in the transverse momentum interval$$\mathrm {D^0 \rightarrow K^-\uppi ^+}$$ GeV/$$2< p_{\textrm{T}} < 12$$ c . The result indicates a positive for non-prompt$$v_2$$ mesons with a significance of 2.7$${{\textrm{D}}^{0}}$$ . The non-prompt$$\sigma $$ -meson$${{\textrm{D}}^{0}}$$ is lower than that of prompt non-strange D mesons with 3.2$$v_2$$ significance in$$\sigma $$ , and compatible with the$$2< p_\textrm{T} < 8~\textrm{GeV}/c$$ of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties.$$v_2$$ -
Abstract Given a suitable solution
V (t ,x ) to the Korteweg–de Vries equation on the real line, we prove global well-posedness for initial data . Our conditions on$$u(0,x) \in V(0,x) + H^{-1}(\mathbb {R})$$ V do include regularity but do not impose any assumptions on spatial asymptotics. We show that periodic profiles satisfy our hypotheses. In particular, we can treat localized perturbations of the much-studied periodic traveling wave solutions (cnoidal waves) of KdV. In the companion paper Laurens (Nonlinearity. 35(1):343–387, 2022.$$V(0,x)\in H^5(\mathbb {R}/\mathbb {Z})$$ https://doi.org/10.1088/1361-6544/ac37f5 ) we show that smooth step-like initial data also satisfy our hypotheses. We employ the method of commuting flows introduced in Killip and Vişan (Ann. Math. (2) 190(1):249–305, 2019.https://doi.org/10.4007/annals.2019.190.1.4 ) where . In that setting, it is known that$$V\equiv 0$$ is sharp in the class of$$H^{-1}(\mathbb {R})$$ spaces.$$H^s(\mathbb {R})$$ -
Abstract We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive
meson muoproduction at COMPASS using 160 GeV/$$\rho ^0$$ c polarised and$$ \mu ^{+}$$ beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$ \mu ^{-}$$ $$c^2$$ 17.0 GeV/$$< W<$$ , 1.0 (GeV/$$c^2$$ c )$$^2$$ 10.0 (GeV/$$< Q^2<$$ c ) and 0.01 (GeV/$$^2$$ c )$$^2$$ 0.5 (GeV/$$< p_{\textrm{T}}^2<$$ c ) . Here,$$^2$$ W denotes the mass of the final hadronic system, the virtuality of the exchanged photon, and$$Q^2$$ the transverse momentum of the$$p_{\textrm{T}}$$ meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\rho ^0$$ ) indicate a violation of$$\gamma ^*_T \rightarrow V^{ }_L$$ s -channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive production.$$\rho ^0$$