Event detection is gaining increasing attention in smart cities research. Large-scale mobility data serves as an important tool to uncover the dynamics of urban transportation systems, and more often than not the dataset is incomplete. In this article, we develop a method to detect extreme events in large traffic datasets, and to impute missing data during regular conditions. Specifically, we propose a robust tensor recovery problem to recover low-rank tensors under fiber-sparse corruptions with partial observations, and use it to identify events, and impute missing data under typical conditions. Our approach is scalable to large urban areas, taking full advantage of the spatio-temporal correlations in traffic patterns. We develop an efficient algorithm to solve the tensor recovery problem based on the alternating direction method of multipliers (ADMM) framework. Compared with existing l 1 norm regularized tensor decomposition methods, our algorithm can exactly recover the values of uncorrupted fibers of a low-rank tensor and find the positions of corrupted fibers under mild conditions. Numerical experiments illustrate that our algorithm can achieve exact recovery and outlier detection even with missing data rates as high as 40% under 5% gross corruption, depending on the tensor size and the Tucker rank of the low rank tensor. Finally, we apply our method on a real traffic dataset corresponding to downtown Nashville, TN and successfully detect the events like severe car crashes, construction lane closures, and other large events that cause significant traffic disruptions.
more »
« less
Physics-Informed Machine Learning for Calibrating Macroscopic Traffic Flow Models
Well-calibrated traffic flow models are fundamental to understanding traffic phenomena and designing control strategies. Traditional calibration has been developed based on optimization methods. In this paper, we propose a novel physics-informed, learning-based calibration approach that achieves performances comparable to and even better than those of optimization-based methods. To this end, we combine the classical deep autoencoder, an unsupervised machine learning model consisting of one encoder and one decoder, with traffic flow models. Our approach informs the decoder of the physical traffic flow models and thus induces the encoder to yield reasonable traffic parameters given flow and speed measurements. We also introduce the denoising autoencoder into our method so that it can handle not only with normal data but also corrupted data with missing values. We verified our approach with a case study of Interstate 210 Eastbound in California. It turns out that our approach can achieve comparable performance to the-state-of-the-art calibration methods given normal data and outperform them given corrupted data with missing values. History: This paper has been accepted for the Transportation Science Special Issue on ISTTT25 Conference. Funding: This study was supported by the National Science Foundation [Grant CMMI-1949710] and the C2SMART Research Center, a Tier 1 University Transportation Center.
more »
« less
- Award ID(s):
- 1949710
- PAR ID:
- 10558583
- Publisher / Repository:
- Informs
- Date Published:
- Journal Name:
- Transportation Science
- Volume:
- 58
- Issue:
- 6
- ISSN:
- 0041-1655
- Page Range / eLocation ID:
- 1389 to 1402
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Large-scale traffic simulations are necessary for the planning, design, and operation of city-scale transportation systems. These simulations enable novel and complex transportation technology and services such as optimization of traffic control systems, supporting on-demand transit, and redesigning regional transit systems for better energy efficiency and emissions. For a city-wide simulation model, big data from multiple sources such as Open Street Map (OSM), traffic surveys, geo-location traces, vehicular traffic data, and transit details are integrated to create a unique and accurate representation. However, in order to accurately identify the model structure and have reliable simulation results, these traffic simulation models must be thoroughly calibrated and validated against real-world data. This paper presents a novel calibration approach for a city-scale traffic simulation model based on limited real-world speed data. The simulation model runs a microscopic and mesoscopic realistic traffic simulation from Chattanooga, TN (US) for a 24-hour period and includes various transport modes such as transit buses, passenger cars, and trucks. The experiment results presented demonstrate the effectiveness of our approach for calibrating large-scale traffic networks using only real-world speed data. This paper presents our proposed calibration approach that utilizes 2160 real-world speed data points, performs sensitivity analysis of the simulation model to input parameters, and genetic algorithm for optimizing the model for calibration.more » « less
-
Imputing missing data is a critical task in data-driven intelligent transportation systems. During recent decades there has been a considerable investment in developing various types of sensors and smart systems, including stationary devices (e.g., loop detectors) and floating vehicles equipped with global positioning system (GPS) trackers to collect large-scale traffic data. However, collected data may not include observations from all road segments in a traffic network for different reasons, including sensor failure, transmission error, and because GPS-equipped vehicles may not always travel through all road segments. The first step toward developing real-time traffic monitoring and disruption prediction models is to estimate missing values through a systematic data imputation process. Many of the existing data imputation methods are based on matrix completion techniques that utilize the inherent spatiotemporal characteristics of traffic data. However, these methods may not fully capture the clustered structure of the data. This paper addresses this issue by developing a novel data imputation method using PARATUCK2 decomposition. The proposed method captures both spatial and temporal information of traffic data and constructs a low-dimensional and clustered representation of traffic patterns. The identified spatiotemporal clusters are used to recover network traffic profiles and estimate missing values. The proposed method is implemented using traffic data in the road network of Manhattan in New York City. The performance of the proposed method is evaluated in comparison with two state-of-the-art benchmark methods. The outcomes indicate that the proposed method outperforms the existing state-of-the-art imputation methods in complex and large-scale traffic networks.more » « less
-
Self-supervised skeleton-based action recognition has attracted more attention in recent years. By utilizing the unlabeled data, more generalizable features can be learned to alleviate the overfitting problem and reduce the demand for massive labeled training data. Inspired by the MAE [1], we propose a spatial-temporal masked autoencoder framework for self-supervised 3D skeleton-based action recognition (SkeletonMAE). Following MAE's masking and reconstruction pipeline, we utilize a skeleton-based encoder-decoder transformer architecture to reconstruct the masked skeleton sequences. A novel masking strategy, named Spatial-Temporal Masking, is introduced in terms of both joint-level and frame-level for the skeleton sequence. This pre-training strategy makes the encoder output generalizable skeleton features with spatial and temporal dependencies. Given the unmasked skeleton sequence, the encoder is fine-tuned for the action recognition task. Extensive ex- periments show that our SkeletonMAE achieves remarkable performance and outperforms the state-of-the-art methods on both NTU RGB+D 60 and NTU RGB+D 120 datasets.more » « less
-
null (Ed.)Unsupervised anomaly detection plays a crucial role in many critical applications. Driven by the success of deep learning, recent years have witnessed growing interests in applying deep neural networks (DNNs) to anomaly detection problems. A common approach is using autoencoders to learn a feature representation for the normal observations in the data. The reconstruction error of the autoencoder is then used as outlier scores to detect the anomalies. However, due to the high complexity brought upon by the over-parameterization of DNNs, the reconstruction error of the anomalies could also be small, which hampers the effectiveness of these methods. To alleviate this problem, we propose a robust framework using collaborative autoencoders to jointly identify normal observations from the data while learning its feature representation. We investigate the theoretical properties of the framework and empirically show its outstanding performance as compared to other DNN-based methods. Our experimental results also show the resiliency of the framework to missing values compared to other baseline methods.more » « less
An official website of the United States government
