skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermo-mechanical aspects of gamma irradiation effects on GaN HEMTs
We report thermal and mechanical responses accompanying electrical characteristics of depletion mode GaN high electron mobility transistors exposed to gamma radiation up to 107rads. Changes in the lattice strain and temperature were simultaneously characterized by changes in the phonon frequency of E2(high) and A1(LO) from the on-state and unpowered/pinched off reference states. Lower doses of radiation improved electrical properties; however, degradation initiated at about 106rads. We observed about 16% decrease in the saturation current and 6% decrease in the transconductance at the highest dose. However, a leakage current increase by three orders of magnitude was the most notable radiation effect. We observed temperature increase by 40% and mechanical stress increase by a factor of three at a dose of 107rads compared to the pristine devices. Spatial mapping of mechanical stress along the channel identifies the gate region as a mechanically affected area, whereas the thermal degradation was mostly uniform. Transmission electron microscopy showed contrast changes reflecting a high vacancy concentration in the gate region. These findings suggest that localized stress (mechanical hotspots) may increase vulnerability to radiation damage by accommodating higher concentration of defects that promote the leakage current.  more » « less
Award ID(s):
2015795
PAR ID:
10364315
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Applied Physics Letters
Volume:
120
Issue:
12
ISSN:
0003-6951
Page Range / eLocation ID:
Article No. 124101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Radiation damage mitigation in electronics remains a challenge because the only established technique, thermal annealing, does not guarantee a favorable outcome. In this study, a non-thermal annealing technique is presented, where electron momentum from very short duration and high current density pulses is used to target and mobilize the defects. The technique is demonstrated on 60 Co gamma irradiated (5 × 10 6 rad dose and 180 × 10 3 rad h −1 dose rate) GaN high electron mobility transistors. The saturation current and maximum transconductance were fully and the threshold voltage was partially recovered at 30 °C or less. In comparison, thermal annealing at 300 °C mostly worsened the post-irradiation characteristics. Raman spectroscopy showed an increase in defects that reduce the 2-dimensional electron gas (2DEG) concentration and increase the carrier scattering. Since the electron momentum force is not applicable to the polymeric surface passivation, the proposed technique could not recover the gate leakage current, but performed better than thermal annealing. The findings of this study may benefit the mitigation of some forms of radiation damage in electronics that are difficult to achieve with thermal annealing. 
    more » « less
  2. Abstract 17 MeV proton irradiation at fluences from 3–7 × 1013cm−2of vertical geometry NiO/β-Ga2O3heterojunction rectifiers produced carrier removal rates in the range 120–150 cm−1in the drift region. The forward current density decreased by up to 2 orders of magnitude for the highest fluence, while the reverse leakage current increased by a factor of ∼20. Low-temperature annealing methods are of interest for mitigating radiation damage in such devices where thermal annealing is not feasible at the temperatures needed to remove defects. While thermal annealing has previously been shown to produce a limited recovery of the damage under these conditions, athermal annealing by minority carrier injection from NiO into the Ga2O3has not previously been attempted. Forward bias annealing produced an increase in forward current and a partial recovery of the proton-induced damage. Since the minority carrier diffusion length is 150–200 nm in proton irradiated Ga2O3, recombination-enhanced annealing of point defects cannot be the mechanism for this recovery, and we suggest that electron wind force annealing occurs. 
    more » « less
  3. The study investigates the mitigation of radiation damage on p‐type SnO thin‐film transistors (TFTs) with a fast, room‐temperature annealing process. Atomic layer deposition is utilized to fabricate bottom‐gate TFTs of high‐quality p‐type SnO layers. After 2.8 MeV Au4+irradiation at a fluence level of 5.2 × 1012 ions cm−2, the output drain current and on/off current ratio (Ion/Ioff) decrease by more than one order of magnitude, field‐effect mobility (μFE) reduces more than four times, and subthreshold swing (SS) increases more than four times along with a negative shift in threshold voltage. The observed degradation is attributed to increased surface roughness and defect density, as confirmed by scanning electron microscopy (SEM), high‐resolution micro‐Raman, and transmission electron microscopy (TEM) with geometric phase analysis (GPA). A technique is demonstrated to recover the device performance at room temperature and in less than a minute, using the electron wind force (EWF) obtained from low‐duty‐cycle high‐density pulsed current. At a pulsed current density of 4.0 × 105 A cm−2, approximately four times increase inIon/Ioffis observed, 41% increase inμFE, and 20% decrease in the SS of the irradiated TFTs, suggesting effectiveness of the new annealing technique. 
    more » « less
  4. Abstract In this work, TiO2thin films deposited by the atomic layer deposition (ALD) method were treated with a special N2O plasma surface treatment and used as the gate dielectric for AlGaN/GaN metal insulator semiconductor high electron mobility transistors (MISHEMTs). The N2O plasma surface treatment effectively reduces defects in the oxide during low-temperature ALD growth. In addition, it allows oxygen atoms to diffuse into the device cap layer to increase the barrier height and thus reduce the gate leakage current. These TiO2films exhibit a dielectric constant of 54.8 and a two-terminal current of 1.96 × 10−10A mm−1in 2μm distance. When applied as the gate dielectric, the AlGaN/GaN MISHEMT with a 2μm-gate-length shows a high on/off ratio of 2.59 × 108and a low subthreshold slope (SS) of 84 mV dec−1among all GaN MISHEMTs using TiO2as the gate dielectric. This work provides a feasible way to significantly improve the TiO2film electrical property for gate dielectrics, and it suggests that the developed TiO2dielectric is a promising high-κgate oxide and a potential passivation layer for GaN-based MISHEMTs, which can be further extended to other transistors. 
    more » « less
  5. In this work, we demonstrate the rejuvenation of Ti/4H-SiC Schottky barrier diodes after forward current-induced degradation, at room temperature and in a few seconds, by exploiting the physics of high-energy electron interactions with defects. The diodes were intentionally degraded to a 42% decrease in forward current and a 9% increase in leakage current through accelerated electrical stressing. The key feature of our proposed rejuvenation process is very high current density electrical pulsing with low frequency and duty cycle to suppress any temperature rise. The primary stimulus is, therefore, the electron wind force, which is derived from the loss of the momentum of the high energy electrons upon collision with the defects. Such defect-specific or “just in location” mobilization of atoms allows a significant decrease in defect concentration, which is not possible with conventional thermal annealing that requires higher temperatures and longer times. We show evidence of rejuvenation with additional improvement in leakage current (16%) and forward current (38%) beyond the pristine condition. Transmission electron microscopy, geometric phase analysis, Raman spectroscopy, and energy dispersive x-ray-spectroscopy reveal the enhancement of defects and interfaces. The ultrafast and room temperature process has the potential for rejuvenating electronic devices operating in high power and harsh environmental conditions. 
    more » « less