Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This paper addresses one of the critical questions of scientific inquiry: How do we know when a given data set is representative of the phenomenon being examined? For paleomagnetists, the question is often whether a particular data set sufficiently averaged paleosecular variation (PSV). To this aim, we updated an existing PSV data set that now comprises 2,441 site mean directions from 94 individual studies (PSV10‐24). Minimal filtering for data quality resulted in 1,619 sites from 90 publications. Fitting PSV10‐24 with two newly defined parameters as well as two existing ones form the basis of a Giant Gaussian Process field model (THG24) consistent with the data. Drawing directions from THG24 yields directional distributions predicted for a given latitude allowing a comparison between empirical distributions and the cumulative distribution function generated by the model. This tests whether the observed data adequately averaged out PSV according to THG24. We applied these tests to five data sets from Large Igneous Provinces from the last billion years and find that they are consistent with the THG24 model as well. Sedimentary data sets that may have experienced inclination shallowing can be corrected using an (un)flattening factor that yields directions satisfying THG24 in a newly‐defined, four‐parameter space. This approach builds on the Elongation‐Inclination (E/I) method of Tauxe and Kent (2004),https://doi.org/10.1029/145gm08, so the approach introduced here is called SVEI. We show examples of the use of SVEI and explain how to use this newly developed Python code that is publicly available in the PmagPy GitHub repository.more » « less
-
Abstract A foundational assumption in paleomagnetism is that the Earth's magnetic field behaves as a geocentric axial dipole (GAD) when averaged over sufficient timescales. Compilations of directional data averaged over the past 5 Ma yield a distribution largely compatible with GAD, but the distribution of paleointensity data over this timescale is incompatible. Reasons for the failure of GAD include: (a) Arbitrary “selection criteria” to eliminate “unreliable” data vary among studies, so the paleointensity database may include biased results. (b) The age distribution of existing paleointensity data varies with latitude, so different latitudinal averages represent different time periods. (c) The time‐averaged field could be truly non‐dipolar. Here, we present a consistent methodology for analyzing paleointensity results and comparing time‐averaged paleointensities from different studies. We apply it to data from Plio/Pleistocene Hawai'ian igneous rocks, sampled from fine‐grained, quickly cooled material (lava flow tops, dike margins and scoria cones) and subjected to the IZZI‐Thellier technique; the data were analyzed using the Bias Corrected Estimation of Paleointensity method of Cych et al. (2021,https://doi.org/10.1029/2021GC009755), which produces accurate paleointensity estimates without arbitrarily excluding specimens from the analysis. We constructed a paleointensity curve for Hawai'i over the Plio/Pleistocene using the method of Livermore et al. (2018,https://doi.org/10.1093/gji/ggy383), which accounts for the age distribution of data. We demonstrate that even with the large uncertainties associated with obtaining a mean field from temporally sparse data, our average paleointensities obtained from Hawai'i and Antarctica (reanalyzed from Asefaw et al., 2021,https://doi.org/10.1029/2020JB020834) are not GAD‐like from 0 to 1.5 Ma but may be prior to that.more » « less
-
Abstract Twenty‐two sites, subjected to an IZZI‐modified Thellier‐Thellier experiment and strict selection criteria, recover a paleomagnetic axial dipole moment (PADM) of 62.2 ± 30.6 ZAm2in Northern Israel over the Pleistocene (0.012–2.58 Ma). Pleistocene data from comparable studies from Antarctica, Iceland, and Hawaii, re‐analyzed using the same criteria and age range, show that the Northern Israeli data are on average slightly higher than those from Iceland (PADM = 53.8 ± 23 ZAm2,n = 51 sites) and even higher than the Antarctica average (PADM = 40.3 ± 17.3 ZAm2,n = 42 sites). Also, the data from the Hawaiian drill core, HSDP2, spanning the last half million years (PADM = 76.7 ± 21.3 ZAm2,n = 59 sites) are higher than those from Northern Israel. These results, when compared to Pleistocene results filtered from the PINT database (www.pintdb.org) suggest that data from the Northern hemisphere mid‐latitudes are on average higher than those from the southern hemisphere and than those from latitudes higher than 60°N. The weaker intensities found at high (northern and southern) latitudes therefore, cannot be attributed to inadequate spatiotemporal sampling of a time‐varying dipole moment or low quality data. The high fields in mid‐latitude northern hemisphere could result from long‐lived non‐axial dipole terms in the geomagnetic field with episodes of high field intensities occurring at different times in different longitudes. This hypothesis is supported by an asymmetry predicted from the Holocene, 100 kyr, and 5 million year time‐averaged geomagnetic field models.more » « less
-
Uziel, Joe (Ed.)Data from the marriage of paleomagnetism and archaeology (archaeomagnetism) are the backbone of attempts to create geomagnetic field models for ancient times. Paleointensity experimental design has been the focus of intensive efforts and the requirements and shortcomings are increasingly well understood. Some archaeological materials have excellent age control from inscriptions, which can be tied to a given decade or even a specific year in some cases. In this study, we analyzed fired mud bricks used for the construction of the Ishtar Gate, the entrance complex to the ancient city of Babylon in Southern Mesopotamia. We were able to extract reliable intensity data from all three phases of the gate, the earliest of which includes bricks inscribed with the name of King Nebuchadnezzar II (605 to 562 BCE). These results (1) add high quality intensity data to a region relatively unexplored so far (Southern Mesopotamia), (2) contribute to a better understanding of paleosecular variation in this region, and the development of an archaeomagnetic dating reference for one of the key regions in the history of human civilizations; (3) demonstrate the potential of inscribed bricks (glazed and unglazed), a common material in ancient Mesopotamia, to archaeomagnetic studies; and (4) suggest that the gate complex was constructed some time after the Babylonian conquest of Jerusalem, and that there were no substantial chronological gaps in the construction of each consecutive phase. The best fit of our data (averaging 136±2.1 ZAm2) with those of the reference curve (the Levantine Archaeomagnetic Curve) is 569 BCE.more » « less
An official website of the United States government
