skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Actuation Modeling of a Microfluidically Reconfigurable Radiofrequency Device
Microfluidic-based techniques have been shown to address limitations of reconfigurable radio frequency (RF) antennas and filters in efficiency, power handling capability, cost, and frequency tuning. However, the current devices suffer from significant integration challenges associated with packaging, actuation, and control. Recent advances in reconfigurable microfluidics that utilize the motion of a selectively metalized plate (SMP) for RF tuning have demonstrated promising RF capabilities but have exposed a need for an accurate fluid actuation model. This research presents a model for the mechanical motion of a moving plate in a channel to relate the SMP size, microfluidic channel size, velocity, and inlet pressure. This model facilitates understanding of the actuation response of an RF tuning system based on a moving plate independent of the actuation method. This model is validated using a millimeter-scale plate driven by a gravitational pressure head as a quasi-static pressure source. Measurements of the prototyped device show excellent agreement with the analytical model; thus, the designer can utilize the presented model for designing and optimizing a microfluidic-based reconfigurable RF device and selecting actuation methods to meet desired outcomes. To examine model accuracy at device scale, recent papers in the microfluidics reconfigurable RF area have been studied, and excellent agreement between our proposed model and the literature data is observed.  more » « less
Award ID(s):
1920953
PAR ID:
10558637
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ASME
Date Published:
Journal Name:
Journal of Fluids Engineering
Volume:
146
Issue:
8
ISSN:
0098-2202
Page Range / eLocation ID:
018204
Subject(s) / Keyword(s):
electrowetting, microfluidics, dynamic model
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Microfluidically reconfigurable radio-frequency (RF) devices in general have been found attractive for low-loss, wide-frequency tunability and high-power-handling capabilities. Recently, integrated actuation of the microfluidically reconfigurable devices has been proposed for compact mm-wave device applications. This article for the first time introduces microfluidically reconfigurable frequency- and/or bandwidthtunable bandpass filters (BPFs) operated at the mm-wave band with integrated actuation. The BPFs consist of coupled hairpin resonators. Frequency tuning is achieved by capacitively loading the resonators. Bandwidth tuning is achieved by creating varying capacitive loading among the resonators to control the interresonator couplings. The capacitive loading mechanisms are realized using the selectively metallized plates (SMPs) that can be repositioned within the microfluidic channels. The microfluidic channels are located directly above the stationary metallizations of the filter. Piezoelectric bending actuators placed under the filter’s ground plane provide the SMP motion capability. The BPFs perform with the worst-case insertion loss of 3.1 dB. Frequency-tuning capable filters operate within 28–38-GHz band. Fractional bandwidth tunability varies from 7.8% to 16.7% at 38 GHz and 7.6% to 12.5% at 28 GHz for the filter that is capable of both tuning mechanisms. The filters are characterized to handle 5 W of the continuous RF power without needing thick ground planes or heat sinks. In addition, the frequency-tuning speed is characterized to be 285 MHz/ms. 
    more » « less
  2. Microfluidics has earned a reputation for providing numerous transformative but disconnected devices and techniques. Active research seeks to address this challenge by integrating microfluidic components, including embedded miniature pumps. However, a significant portion of existing microfluidic integration relies on the time-consuming manual fabrication that introduces device variations. We put forward a framework for solving this disconnect by combining new pumping mechanics and 3D printing to demonstrate several novel, integrated and wirelessly driven microfluidics. First, we characterized the simplicity and performance of printed microfluidics with a minimum feature size of 100 µm. Next, we integrated a microtesla (µTesla) pump to provide non-pulsatile flow with reduced shear stress on beta cells cultured on-chip. Lastly, the integration of radio frequency (RF) device and a hobby-grade brushless motor completed a self-enclosed platform that can be remotely controlled without wires. Our study shows how new physics and 3D printing approaches not only provide better integration but also enable novel cell-based studies to advance microfluidic research. 
    more » « less
  3. Abstract Mobile robots with manipulation capability are a key technology that enables flexible robotic interactions, large area covering and remote exploration. This paper presents a novel class of actuation-coordinated mobile parallel robots (ACMPRs) that utilize parallel mechanism configurations and perform hybrid moving and manipulation functions through coordinated wheel actuators. The ACMPRs differ with existing mobile manipulators by their unique combination of the mobile wheel actuators and the parallel mechanism topology through prismatic joint connections. Common motion of the wheels will provide mobile function while their relative motion will actuate the parallel manipulation function. This new concept reduces actuation requirement and increases manipulation accuracy and mobile motion stability through coordinated and connected wheel actuators comparing with existing mobile parallel manipulators. The relative wheel location on the base frame also enables a reconfigurable base size with variable moving stability on the ground. The basic concept and general type synthesis are introduced and followed by kinematics and inverse dynamics analysis of a selected three limb ACMPR. A numerical simulation also illustrates the dynamics model and the motion property of the new mobile parallel robot (MPR) followed by a prototype-based experimental validation. The work provides a basis for introducing this new class of robots for potential applications in surveillance, industrial automation, construction, transportation, human assistance, medical applications, and other operations in extreme environment such as nuclear plants, Mars, etc. 
    more » « less
  4. Patterned deposition and 3D fabrication techniques have enabled the use of hydrogels for a number of applications including microfluidics, sensors, separations, and tissue engineering in which form fits function. Devices such as reconfigurable microvalves or implantable tissues have been created using lithography or casting techniques. Here, we present a novel open-microfluidic patterning method that utilizes surface tension forces to form hydrogel layers on top of each other, into a patterned 3D structure. We use a patterning device to form a temporary open microfluidic channel on an existing gel layer, allowing the controlled flow of unpolymerized gel in device-regions. After layer gelation and device removal, the process can be repeated iteratively to create multi-layered 3D structures. The use of open-microfluidic and surface tension-based methods to define the shape of each individual layer enables patterning to be performed with a simple pipette and with minimal dead-volume. Our method is compatible with unmodified (native) biological hydrogels, and other non-biological materials with precursor fluid properties compatible with capillary flow. With our open-microfluidic layer-by-layer fabrication method, we demonstrate the capability to build agarose, type I collagen, and polymer–peptide 3D structures featuring asymmetric designs, multiple components, overhanging features, and cell-laden regions. 
    more » « less
  5. We study theoretically and experimentally pressure-driven flow between a flat wall and a parallel corrugated wall, a design used widely in microfluidics for low-Reynolds-number mixing and particle separation. In contrast to previous work, which focuses on recirculating helicoidal flows along the microfluidic channel that result from its confining lateral walls, we study the three-dimensional pressure and flow fields and trajectories of tracer particles at the scale of each corrugation. Employing a perturbation approach for small surface roughness, we find that anisotropic pressure gradients generated by the surface corrugations, which are tilted with respect to the applied pressure gradient, drive transverse flows. We measure experimentally the flow fields using particle image velocimetry and quantify the effect of the ratio of the surface wavelength to the channel height on the transverse flows. Further, we track tracer particles moving near the surface structures and observe three-dimensional skewed helical trajectories. Projecting the helical motion to two dimensions reveals oscillatory near-surface motion with an overall drift along the surface corrugations, reminiscent of earlier experimental observations and independent of the secondary helical flows that are induced by confining lateral walls. Finally, we quantify the hydrodynamically induced drift transverse to the mean flow direction as a function of distance to the surface and the wavelength of the surface corrugations. 
    more » « less