skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Balancing mitigation strategies for viral outbreaks
Control and prevention strategies are indispensable tools for managing the spread of infectious diseases. This paper examined biological models for the post-vaccination stage of a viral outbreak that integrate two important mitigation tools: social distancing, aimed at reducing the disease transmission rate, and vaccination, which boosts the immune system. Five different scenarios of epidemic progression were considered: (ⅰ) the no control scenario, reflecting the natural evolution of a disease without any safety measures in place, (ⅱ) the reconstructed scenario, representing real-world data and interventions, (ⅲ) the social distancing control scenario covering a broad set of behavioral changes, (ⅳ) the vaccine control scenario demonstrating the impact of vaccination on epidemic spread, and (ⅴ) the both controls concurrently scenario incorporating social distancing and vaccine controls simultaneously. By comparing these scenarios, we provided a comprehensive analysis of various intervention strategies, offering valuable insights into disease dynamics. Our innovative approach to modeling the cost of control gave rise to a robust computational algorithm for solving optimal control problems associated with different public health regulations. Numerical results were supported by real data for the Delta variant of the COVID-19 pandemic in the United States.  more » « less
Award ID(s):
2011622 2409868
PAR ID:
10558699
Author(s) / Creator(s):
; ;
Publisher / Repository:
NSF Public Access Repository (NSF-PAR)
Date Published:
Journal Name:
Mathematical Biosciences and Engineering
Volume:
21
Issue:
12
ISSN:
1551-0018
Page Range / eLocation ID:
7650 to 7687
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Individuals’ socio-demographic and economic characteristics crucially shape the spread of an epidemic by largely determining the exposure level to the virus and the severity of the disease for those who got infected. While the complex interplay between individual characteristics and epidemic dynamics is widely recognised, traditional mathematical models often overlook these factors. In this study, we examine two important aspects of human behaviour relevant to epidemics: contact patterns and vaccination uptake. Using data collected during the COVID-19 pandemic in Hungary, we first identify the dimensions along which individuals exhibit the greatest variation in their contact patterns and vaccination uptake. We find that generally higher socio-economic groups of the population have a higher number of contacts and a higher vaccination uptake with respect to disadvantaged groups. Subsequently, we propose a data-driven epidemiological model that incorporates these behavioural differences. Finally, we apply our model to analyse the fourth wave of COVID-19 in Hungary, providing valuable insights into real-world scenarios. By bridging the gap between individual characteristics and epidemic spread, our research contributes to a more comprehensive understanding of disease dynamics and informs effective public health strategies. 
    more » « less
  2. Abstract The rapid rollout of the COVID-19 vaccine raises the question of whether and when the ongoing pandemic could be eliminated with vaccination and non-pharmaceutical interventions (NPIs). Despite advances in the impact of NPIs and the conceptual belief that NPIs and vaccination control COVID-19 infections, we lack evidence to employ control theory in real-world social human dynamics in the context of disease spreading. We bridge the gap by developing a new analytical framework that treats COVID-19 as a feedback control system with the NPIs and vaccination as the controllers and a computational model that maps human social behaviors into input signals. This approach enables us to effectively predict the epidemic spreading in 381 Metropolitan statistical areas (MSAs) in the US by learning our model parameters utilizing the time series NPIs (i.e., the stay-at-home order, face-mask wearing, and testing) data. This model allows us to optimally identify three NPIs to predict infections accurately in 381 MSAs and avoid over-fitting. Our numerical results demonstrate our approach’s excellent predictive power with R 2  > 0.9 for all the MSAs regardless of their sizes, locations, and demographic status. Our methodology allows us to estimate the needed vaccine coverage and NPIs for achieving R e to a manageable level and how the variants of concern diminish the likelihood for disease elimination at each location. Our analytical results provide insights into the debates surrounding the elimination of COVID-19. NPIs, if tailored to the MSAs, can drive the pandemic to an easily containable level and suppress future recurrences of epidemic cycles. 
    more » « less
  3. We study the role of vaccine acceptance in controlling the spread of COVID-19 in the US using AI-driven agent-based models. Our study uses a 288 million node social contact network spanning all 50 US states plus Washington DC, comprised of 3300 counties, with 12.59 billion daily interactions. The highly-resolved agent-based models use realistic information about disease progression, vaccine uptake, production schedules, acceptance trends, prevalence, and social distancing guidelines. Developing a national model at this resolution that is driven by realistic data requires a complex scalable workflow, model calibration, simulation, and analytics components. Our workflow optimizes the total execution time and helps in improving overall human productivity.This work develops a pipeline that can execute US-scale models and associated workflows that typically present significant big data challenges. Our results show that, when compared to faster and accelerating vaccinations, slower vaccination rates due to vaccine hesitancy cause averted infections to drop from 6.7M to 4.5M, and averted total deaths to drop from 39.4K to 28.2K nationwide. This occurs despite the fact that the final vaccine coverage is the same in both scenarios. Improving vaccine acceptance by 10% in all states increases averted infections from 4.5M to 4.7M (a 4.4% improvement) and total deaths from 28.2K to 29.9K (a 6% increase) nationwide. The analysis also reveals interesting spatio-temporal differences in COVID-19 dynamics as a result of vaccine acceptance. To our knowledge, this is the first national-scale analysis of the effect of vaccine acceptance on the spread of COVID-19, using detailed and realistic agent-based models. 
    more » « less
  4. During large scale outbreaks of infectious diseases, it is imperative that media report about the potential risks. Because media reporting plays a vital role in disseminating crucial information about diseases and its associated risk, understanding how media reports could influence individuals’ behavior and its potential impact on disease transmission dynamics is important. A mathematical model within an optimal control framework of a generic disease, accounting for treatment and media reporting of disease-induced deaths is formulated. Due to the complexity of choosing the best media function, our goal is to attempt to address the following research question: what is the effect of the media-induced functional response on mitigating the spread of the disease? Connecting the functional forms to the control problem is an approach that is not very developed in the literature. Thus, this study analyses the effect of different incidence functions on disease transmission, and the qualitative nature of epidemic dynamics by carrying out optimal control analysis using three different contact rates and a media function that is dependent on the number of deaths. Theoretical analyses show that the functional forms of the effective contact rate have no effect on initial disease transmission. Time-dependent controls for treatment and vaccination with a constant effective contact rate are incorporated to determine optimal control strategies. Numerical simulations show the short-term impact of media coverage on mitigating the spread of the disease, and it is observed that with three incidence functions used, the qualitative nature of the controls remains the same. The effective contact rates are graphically shown to have a population-level effect on the disease dynamics as the number of treated and recovered individuals could be significantly different. Finally, it is shown that treatment of infectives should be at its maximum rate for a longer period compared to vaccination, while concurrent implementation of vaccination and treatment is more impactful in mitigating the spread of the disease. Thus, it is imperative that media reports and health policy decision making on infectious diseases are contextualized. 
    more » « less
  5. Abstract During infectious disease outbreaks, individuals may adopt protective measures like vaccination and physical distancing in response to awareness of disease burden. Prior work showed how feedbacks between epidemic intensity and awareness-based behaviour shape disease dynamics. These models often overlook social divisions, where population subgroups may be disproportionately impacted by a disease and more responsive to the effects of disease within their group. We develop a compartmental model of disease transmission and awareness-based protective behaviour in a population split into two groups to explore the impacts of awareness separation (relatively greater in- vs. out-group awareness of epidemic severity) and mixing separation (relatively greater in- vs. out-group contact rates). Using simulations, we show that groups that are more separated in awareness have smaller differences in mortality. Fatigue (i.e. abandonment of protective measures over time) can drive additional infection waves that can even exceed the size of the initial wave, particularly if uniform awareness drives early protection in one group, leaving that group largely susceptible to future infection. Counterintuitively, vaccine or infection-acquired immunity that is more protective against transmission and mortality may indirectly lead to more infections by reducing perceived risk of infection and therefore vaccine uptake. Awareness-based protective behaviour, including awareness separation, can fundamentally alter disease dynamics. Social media summary: Depending on group division, behaviour based on perceived risk can change epidemic dynamics & produce large later waves. 
    more » « less