skip to main content


Search for: All records

Award ID contains: 1761918

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Maini, Philip K. (Ed.)
    Collective living systems regularly achieve cooperative emergent functions that individual organisms could not accomplish alone. The rafts of fire ants (Solenopsis invicta) are often studied in this context for their ability to create aggregated structures comprised entirely of their own bodies, including tether-like protrusions that facilitate exploration of and escape from flooded environments. While similar protrusions are observed in cytoskeletons and cellular aggregates, they are generally dependent on morphogens or external gradients leaving the isolated role of local interactions poorly understood. Here we demonstrate through an ant-inspired, agent-based numerical model how protrusions in ant rafts may emerge spontaneously due to local interactions. The model is comprised of a condensed structural network of agents that represents the monolayer of interconnected worker ants, which floats on the water and gives ant rafts their form. Experimentally, this layer perpetually contracts, which we capture through the pairwise contraction of all neighboring structural agents at a strain rate of d ˙ . On top of the structural layer, we model a dispersed, on-lattice layer of motile agents that represents free ants, which walk on top of the floating network. Experimentally, these self-propelled free ants walk with some mean persistence length and speed that we capture through an ant-inspired phenomenological model. Local interactions occur between neighboring free ants within some radius of detection, R , and the persistence length of freely active agents is tuned through a noise parameter, η as introduced by the Vicsek model. Both R and η where fixed to match the experimental trajectories of free ants. Treadmilling of the raft occurs as agents transition between the structural and free layers in accordance with experimental observations. Ultimately, we demonstrate how phases of exploratory protrusion growth may be induced by increased ant activity as characterized by a dimensionless parameter, A . These results provide an example in which functional morphogenesis of a living system may emerge purely from local interactions at the constituent length scale, thereby providing a source of inspiration for the development of decentralized, autonomous active matter and swarm robotics. 
    more » « less
  2. Abstract Viscoelastic material behavior in polymer systems largely arises from dynamic topological rearrangement at the network level. In this paper, we present a physically motivated microsphere formulation for modeling the mechanics of transient polymer networks. By following the directional statistics of chain alignment and local chain stretch, the transient microsphere model (TMM) is fully anisotropic and micro-mechanically based. Network evolution is tracked throughout deformation using a Fokker–Planck equation that incorporates the effects of bond creation and deletion at rates that are sensitive to the chain-level environment. Using published data, we demonstrate the model to capture various material responses observed in physical polymers. 
    more » « less
  3. Polymer networks consisting of a mixture of chemical and physical cross-links are known to exhibit complex time-dependent behaviour due to the kinetics of bond association and dissociation. In this article, we highlight and compare two recent physically based constitutive models that describe the nonlinear viscoelastic behaviour of such transient networks. These two models are developed independently by two groups of researchers using different mathematical formulations. Here, we show that this difference can be attributed to different viewpoints: Lagrangian versus Eulerian. We establish the equivalence of the two models under the special situation where chains obey Gaussian statistics and steady-state bond dynamics. We provide experimental data demonstrating that both models can accurately predict the time-dependent uniaxial behaviour of a poly(vinylalcohol) dual cross-link hydrogel. We review the advantages and disadvantages of both approaches in applications and close by discussing a list of open challenges and questions regarding the mathematical modelling of soft, viscoelastic networks. 
    more » « less
  4. null (Ed.)
    Dynamic networks contain crosslinks that re-associate after disconnecting, imparting them with viscoelastic properties. While continuum approaches have been developed to analyze their mechanical response, these approaches can only describe their evolution in an average sense, omitting local, stochastic mechanisms that are critical to damage initiation or strain localization. To address these limitations, we introduce a discrete numerical model that mesoscopically coarse-grains the individual constituents of a dynamic network to predict its mechanical and topological evolution. Each constituent consists of a set of flexible chains that are permanently cross-linked at one end and contain reversible binding sites at their free ends. We incorporate nonlinear force–extension of individual chains via a Langevin model, slip-bond dissociation through Eyring's model, and spatiotemporally-dependent bond attachment based on scaling theory. Applying incompressible, uniaxial tension to representative volume elements at a range of constant strain rates and network connectivities, we then compare the mechanical response of these networks to that predicted by the transient network theory. Ultimately, we find that the idealized continuum approach remains suitable for networks with high chain concentrations when deformed at low strain rates, yet the mesoscale model proves necessary for the exploration of localized stochastic events, such as variability of the bond kinetics, or the nucleation of micro-cavities that likely conceive damage and fracture. 
    more » « less
  5. We have discovered a peculiar form of fracture that occurs in polymer network formed by covalent adaptable bonds. Due to the dynamic feature of the bonds, fracture of this network is rate dependent, and the crack propagates in a highly nonsteady manner. These phenomena cannot be explained by the existing fracture theories, most of which are based on steady-state assumption. To explain these peculiar characteristics, we first revisit the fundamental difference between the transient network and the covalent network in which we highlighted the transient feature of the cracks. We extend the current fracture criterion for crack initiation to a time-evolution scheme that allows one to track the nonsteady propagation of a crack. Through a combined experimental modeling effort, we show that fracture in transient networks is governed by two parameters: the Weissenberg numberW0that defines the history path of crack-driving force and an extension parameter Z that tells how far a crack can grow. We further use our understanding to explain the peculiar experimental observation. To further leverage on this understanding, we show that one can “program” a specimen’s crack extension dynamics by tuning the loading history.

     
    more » « less
  6. null (Ed.)
    We investigate the rate-dependent fracture of vitrimers by conducting a tear test. Based on the relationship between the fracture energy and the thickness of vitrimer films, we, for the first time, obtain the intrinsic fracture energy and bulk dissipation of vitrimers during crack extension. The intrinsic fracture energy strongly depends on tear speed, and such dependence can be well explained by Eyring theory. In contrast, the bulk dissipation only weakly depends on tear speed, which is drastically different from observations on traditional viscoelastic polymers. We ascribe such a weak rate-dependence to the strong force-sensitivity of the exchange reaction of the dynamic covalent bond in the vitrimer. 
    more » « less
  7. null (Ed.)
    Fire ants ( Solenopsis invicta ) are exemplary for their formation of cohered, buoyant and dynamic structures composed entirely of their own bodies when exposed to flooded environments. Here, we observe tether-like protrusions that emerge from aggregated fire ant rafts when docked to stationary, vertical rods. Ant rafts comprise a floating, structural network of interconnected ants on which a layer of freely active ants walk. We show here that sustained shape evolution is permitted by the competing mechanisms of perpetual raft contraction aided by the transition of bulk structural ants to the free active layer and outward raft expansion owing to the deposition of free ants into the structural network at the edges, culminating in global treadmilling. Furthermore, we see that protrusions emerge as a result of asymmetries in the edge deposition rate of free ants. Employing both experimental characterization and a model for self-propelled particles in strong confinement, we interpret that these asymmetries are likely to occur stochastically owing to wall accumulation effects and directional motion of active ants when strongly confined by the protrusions' relatively narrow boundaries. Together, these effects may realize the cooperative, yet spontaneous formation of protrusions that fire ants sometimes use for functional exploration and to escape flooded environments. 
    more » « less
  8. null (Ed.)
    Diffusive motion is typically constrained when particles bind to the medium through which they move. However, when binding is transient and the medium is made of flexible filaments, each association or dissociation event produces a stochastic force that can overcome the medium stickiness and enable motion. This mechanism is amply used by biological systems where the act of balancing binding and displacement robustly achieves key functionalities, including bacterial locomotion or selective active filtering in cells. Here we demonstrate the feasibility of making a dynamic system with macroscopic features, in which analogous binding-mediated motion can be actively driven, precisely tuned, and conveniently studied. We find an optimal binding affinity and number of binding sites for diffusive motion, and an inverse relationship between viscosity and diffusivity. 
    more » « less