skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-mode interference waveguide spectrometer with optimized performance
Chip-scale integrated imaging spectrometers show significant potential for high-performance spectral analysis due to advancements in fabrication and computational techniques. Many practical applications, such as astronomy and molecular spectroscopy, require analyzing light at sub-nanowatt levels, where inherent enhancement in spectrometer signals can reduce the need for expensive photodetectors or long integration time. Previously, we introduced an integrated spectrometer scheme using machine learning to reconstruct spectra from imaging the wavelength-dependent patterns scattered out of a multimode interference (MMI) waveguide. In this work, we report a signal enhancement of 13.6 dB and an increase of device sensitivity and dynamic range by 15 dB by selective roughening of the waveguide surface via plasma etching. By imaging interference patterns at various points along the waveguide, we determine that the best spectrometer performance is achieved by imaging MMI sections with highest pattern variation. We report accurate spectral measurements using convolutional neural network-based spectral reconstruction with 1 nm resolution at input powers as low as 300 pW for the present experimental configuration, and a scattering coefficient of 1.109 cm-1from the etched section.  more » « less
Award ID(s):
2206564 2206259
PAR ID:
10558784
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
32
Issue:
26
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 45873
Size(s):
Article No. 45873
Sponsoring Org:
National Science Foundation
More Like this
  1. Spectral analysis of light is one of the oldest and most versatile scientific methods and the basis of countless techniques and instruments. Miniaturized spectrometers have recently seen great advances, but challenges remain before they are widely deployed. We report an integrated photonic spectrometer that achieves high performance with minimal component complexity by combining imaging of light propagation patterns in multi-mode interference waveguides with machine learning analysis. We demonstrate broadband operation in the visible and near-infrared, 0.05 nm spectral resolution, and an array of four spectrometers on a single chip. Two canonical applications are implemented: spectral analysis of the solar spectrum with neural network reconstruction and detection of Rayleigh scattering from microbeads on an optofluidic chip using principal component classification. These results illustrate the potential of this approach for high-performance spectroscopy across disciplines. 
    more » « less
  2. In this paper, we present the design, optimization, and implementation of a sub-wavelength grating (SWG) multi-mode interference coupler (MMI) on the silicon nitride photonic integrated circuit (PIC) platform with a significantly enhanced bandwidth compared to the conventional MMI. We extend the SWG MMI theory, previously presented for the silicon-on-insulator platform, to the Si3N4/SiO2platform. Our approach involves an initial parameter optimization for a non-paired design, followed by a shift to a paired design that offers a smaller footprint and a broader bandwidth. The optimized SWG MMI exhibits a 1 dB bandwidth of 300 nm for both the insertion loss and power imbalance, making it a significant addition to silicon nitride photonics. 
    more » « less
  3. We demonstrate the thermo-optic properties of silicon-rich silicon nitride (SRN) films deposited using plasma-enhanced chemical vapor deposition (PECVD). Shifts in the spectral response of Mach-Zehnder interferometers (MZIs) as a function of temperature were used to characterize the thermo-optic coefficients of silicon nitride films with varying silicon contents. A clear relation is demonstrated between the silicon content and the exhibited thermo-optic coefficient in silicon nitride films, with the highest achievable coefficient being as high as (1.65±0.08) ×10−4K-1. Furthermore, we realize an SRN multi-mode interferometer (MMI) based thermo-optic switch with over 20 dB extinction ratio and total power consumption for two-port switching of 50 mW. 
    more » « less
  4. Abstract On-chip spectrometers have the potential to offer dramatic size, weight, and power advantages over conventional benchtop instruments for many applications such as spectroscopic sensing, optical network performance monitoring, hyperspectral imaging, and radio-frequency spectrum analysis. Existing on-chip spectrometer designs, however, are limited in spectral channel count and signal-to-noise ratio. Here we demonstrate a transformative on-chip digital Fourier transform spectrometer that acquires high-resolution spectra via time-domain modulation of a reconfigurable Mach-Zehnder interferometer. The device, fabricated and packaged using industry-standard silicon photonics technology, claims the multiplex advantage to dramatically boost the signal-to-noise ratio and unprecedented scalability capable of addressing exponentially increasing numbers of spectral channels. We further explore and implement machine learning regularization techniques to spectrum reconstruction. Using an ‘elastic-D1’ regularized regression method that we develop, we achieved significant noise suppression for both broad (>600 GHz) and narrow (<25 GHz) spectral features, as well as spectral resolution enhancement beyond the classical Rayleigh criterion. 
    more » « less
  5. Sanders, Glen A.; Lieberman, Robert A.; Udd Scheel, Ingrid (Ed.)
    Evanescent wave sensors in photonic integrated circuits have been demonstrated for gas sensing applications. While some methods rely on the distinctive response of certain polymers for sensing specific gases, absorption spectroscopy identifies any gas uniquely from their unique vibration signatures. Based on the Beer-Lambert principle, the sensitivity of absorption by a gas on chip relies on the length of the sensing region, the optical overlap integral with the analyte gas and the absorption cross-section at the wavelength with the fundamental vibration signature. The overlap of the optical mode with the analyte has been enhanced in photonic devices by combining slot waveguide confinements with photonic crystal slow light effects. While the absorption cross-section is a property of the gas, the length of the sensing region is limited by the available area on a chip and waveguide propagation losses that limit the minimum signal to noise ratio. In this paper, we show that by incorporating reflecting loop mirrors, the absorption path length can be doubled for the same geometric length of the absorption sensing waveguide. Light from a waveguide is split into two paths, each with a slow light photonic crystal waveguide, by a 2×2 multimode interference (MMI) power splitter. Each path is terminated by a loop mirror that causes the light to retrace its path back down the sensing arms thereby doubling the optical path length over which light interacts with the analyte. Results on the enhancement of phase sensitivity and absorbance sensitivity in the interferometric configuration are presented 
    more » « less