skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on December 19, 2025

Title: MATTopo: Topology-preserving Medial Axis Transform with Restricted Power Diagram
We present a novel topology-preserving 3D medial axis computation framework based on volumetric restricted power diagram (RPD), while preserving the medial features and geometric convergence simultaneously, for both 3D CAD and organic shapes. The volumetric RPD discretizes the input 3D volume into sub-regions given a set of medial spheres. With this intermediate structure, we convert the homotopy equivalency between the generated medial mesh and the input 3D shape into a localized contractibility checking for each restricted element (power cell, power face, power edge), by checking their connected components and Euler characteristics. We further propose a fractional Euler characteristic algorithm for efficient GPU-based computation of Euler characteristic for each restricted element on the fly while computing the volumetric RPD. Compared with existing voxel-based or point-cloud-based methods, our approach is the first to adaptively and directly revise the medial mesh without globally modifying the dependent structure, such as voxel size or sampling density, while preserving its topology and medial features. In comparison with the feature preservation method MATFP [Wang et al. 2022], our method provides geometrically comparable results with fewer spheres and more robustly captures the topology of the input 3D shape.  more » « less
Award ID(s):
2007661
PAR ID:
10558844
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Association for Computing Machinery
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
43
Issue:
6
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a novel framework for computing the medial axis transform of 3D shapes while preserving their medial features via restricted power diagram (RPD). Medial features, including external features such as the sharp edges and corners of the input mesh surface and internal features such as the seams and junctions of medial axis, are important shape descriptors both topologically and geometrically. However, existing medial axis approximation methods fail to capture and preserve them due to the fundamentally under-sampling in the vicinity of medial features, and the difficulty to build their correct connections. In this paper we use the RPD of medial spheres and its affiliated structures to help solve these challenges. The dual structure of RPD provides the connectivity of medial spheres. The surfacic restricted power cell (RPC) of each medial sphere provides the tangential surface regions that these spheres have contact with. The connected components (CC) of surfacic RPC give us the classification of each sphere, to be on a medial sheet, a seam, or a junction. They allow us to detect insufficient sphere sampling around medial features and develop necessary conditions to preserve them. Using this RPD-based framework, we are able to construct high quality medial meshes with features preserved. Compared with existing sampling-based or voxel-based methods, our method is the first one that can preserve not only external features but also internal features of medial axes. 
    more » « less
  2. Chen, Tsu-Wei; Long, Stephen P (Ed.)
    Abstract Shape plays a fundamental role in biology. Traditional phenotypic analysis methods measure some features but fail to measure the information embedded in shape comprehensively. To extract, compare and analyse this information embedded in a robust and concise way, we turn to topological data analysis (TDA), specifically the Euler characteristic transform. TDA measures shape comprehensively using mathematical representations based on algebraic topology features. To study its use, we compute both traditional and topological shape descriptors to quantify the morphology of 3121 barley seeds scanned with X-ray computed tomography (CT) technology at 127 μm resolution. The Euler characteristic transform measures shape by analysing topological features of an object at thresholds across a number of directional axes. A Kruskal–Wallis analysis of the information encoded by the topological signature reveals that the Euler characteristic transform picks up successfully the shape of the crease and bottom of the seeds. Moreover, while traditional shape descriptors can cluster the seeds based on their accession, topological shape descriptors can cluster them further based on their panicle. We then successfully train a support vector machine to classify 28 different accessions of barley based exclusively on the shape of their grains. We observe that combining both traditional and topological descriptors classifies barley seeds better than using just traditional descriptors alone. This improvement suggests that TDA is thus a powerful complement to traditional morphometrics to comprehensively describe a multitude of ‘hidden’ shape nuances which are otherwise not detected. 
    more » « less
  3. 3D object recognition accuracy can be improved by learning the multi-scale spatial features from 3D spatial geometric representations of objects such as point clouds, 3D models, surfaces, and RGB-D data. Current deep learning approaches learn such features either using structured data representations (voxel grids and octrees) or from unstructured representations (graphs and point clouds). Learning features from such structured representations is limited by the restriction on resolution and tree depth while unstructured representations creates a challenge due to non-uniformity among data samples. In this paper, we propose an end-to-end multi-level learning approach on a multi-level voxel grid to overcome these drawbacks. To demonstrate the utility of the proposed multi-level learning, we use a multi-level voxel representation of 3D objects to perform object recognition. The multi-level voxel representation consists of a coarse voxel grid that contains volumetric information of the 3D object. In addition, each voxel in the coarse grid that contains a portion of the object boundary is subdivided into multiple fine-level voxel grids. The performance of our multi-level learning algorithm for object recognition is comparable to dense voxel representations while using significantly lower memory. 
    more » « less
  4. Abstract An automatic complex topology lightweight structure generation method (ACTLSGM) is presented to automatically generate 3D models of lightweight truss structures with a boundary surface of any shape. The core idea of the ACTLSGM is to use the PIMesh, a mesh generation algorithm developed by the authors, to generate node distributions inside the object representing the boundary surface of the target complex topology structures; raw lightweight truss structures are then generated based on the node distributions; the resulting lightweight truss structure is then created by adjusting the radius of the raw truss structures using an optimization algorithm based on finite element truss analysis. The finite element analysis-based optimization algorithm can ensure that the resulting structures satisfy the design requirements on stress distributions or stiffness. Three demos, including a lightweight structure for a cantilever beam, a femur bone scaffold, and a 3D shoe sole model with adaptive stiffness, can be used to adjust foot pressure distributions for patients with diabetic foot problems and are generated to demonstrate the performance of the ACTLSGM. The ACTLSGM is not limited to generating 3D models of medical devices, but can be applied in many other fields, including 3D printing infills and other fields where customized lightweight structures are required. 
    more » « less
  5. Previous approaches on 3D shape segmentation mostly rely on heuristic processing and hand-tuned geometric descriptors. In this paper, we propose a novel 3D shape representation learning approach, Directionally Convolutional Network (DCN), to solve the shape segmentation problem. DCN extends convolution operations from images to the surface mesh of 3D shapes. With DCN, we learn effective shape representations from raw geometric features, i.e., face normals and distances, to achieve robust segmentation. More specifically, a two-stream segmentation framework is proposed: one stream is made up by the proposed DCN with the face normals as the input, and the other stream is implemented by a neural network with the face distance histogram as the input. The learned shape representations from the two streams are fused by an element-wise product. Finally, Conditional Random Field (CRF) is applied to optimize the segmentation. Through extensive experiments conducted on benchmark datasets, we demonstrate that our approach outperforms the current state-of-the-arts (both classic and deep learning-based) on a large variety of 3D shapes. 
    more » « less