Patients with primary muscle tension dysphonia (pMTD) commonly report paralaryngeal pain and discomfort, and extrinsic laryngeal muscle (ELM) tension and hyperfunction are commonly implicated. However, quantitative physiological metrics to study ELM movement patterns for the characterization of pMTD diagnosis and monitoring of treatment progress are lacking. The objectives of this study were to validate motion capture (MoCap) technology to study ELM kinematics, determine whether MoCap could distinguish ELM tension and hyperfunction between individuals with and without pMTD, and investigate relationships between common clinical voice metrics and ELM kinematics.
Thirty subjects (15 with pMTD and 15 controls) were recruited for the study. Sixteen markers were placed on different anatomical landmarks on the chin and anterior neck. Movements across these regions were tracked during four voice and speech tasks using two three‐dimensional cameras. Movement displacement and variability were determined based on 16 key‐points and 53 edges.
Intraclass correlation coefficients demonstrated high intra‐ and inter‐rater reliability (
Results demonstrate the feasibility and reliability of MoCap for the study of ELM kinematics.
3