Abstract Previous studies have demonstrated the contribution of dissipative heating (DH) to the maximum potential intensity (MPI) of tropical cyclones (TCs). Since DH is a function of near-surface wind speed and thus TC intensity, a natural question arises as to whether DH contributes to the intensity dependence of TC potential intensification rate (PIR). To address this issue, an attempt has been made to include DH in a recently developed time-dependent theory of TC intensification. With this addition, the theory predicts a shift of the maximum PIR toward the higher intensity side, which is consistent with the intensity dependence of TC intensification rate in observed strong TCs. Since the theory without DH predicts a dependence of TC PIR on the square of the MPI, the inclusion of DH results in an even higher PIR for strong TCs. Considering the projected increase in TC MPI under global warming, the theoretical work implies that as the climate continues to warm, TCs may intensify more rapidly. This may not only make the TC intensity forecasting more difficult, but also may increase the threats of TCs to the coastal populations if TCs intensify more rapidly just before they make landfall. Significance Statement Previous studies have demonstrated that dissipative heating (DH) can significantly contribute to the maximum potential intensity (MPI) that a tropical cyclone (TC) can achieve given favorable environmental thermodynamic conditions of the atmosphere and the underlying ocean. Here we show that because DH is a function of near-surface wind speed and thus TC intensity, DH can also significantly contribute to the intensity dependence of TC potential intensification rate (PIR). This has been demonstrated by introducing DH into a recently developed time-dependent theory of TC intensification. With DH the theory predicts a shift of the maximum PIR toward the higher intensity side as observed in strong TCs. Therefore, as the climate continues to warm, TCs may intensify more rapidly and become stronger.
more »
« less
Poleward migration as global warming’s possible self-regulator to restrain future western North Pacific Tropical Cyclone’s intensification
Poleward migration is an interesting phenomenon regarding the shift of Tropical Cyclones (TCs) towards higher latitudes. As climate warms, TCs’ intensification is promoted, and yet over certain oceans, TCs may also migrate poleward into colder waters. To what extent this poleward shift can impact future TC’s intensification is unclear, and a quantitative understanding of these competing processes is lacking. Through investigating one of the most likely TC basins to experience poleward migration, the western North Pacific (WNP), here we explore the issue. Potential Intensity (PI, TC’s intensification upper bound) along TC’s intensification locations (from genesis to the lifetime maximum intensity location) are analysed. We find that poleward migration can partially cancel global warming’s positive impact on future WNP TC’s intensification. With poleward migration, the PI increasing trend slope is gentler. We estimate that poleward migration can reduce the increasing trend slope of the proportion of Category-5 PI by 42% (22%) under a strong (moderate) emission pathway; and 68% (30%) increasing trend slope reduction for the average PI.
more »
« less
- Award ID(s):
- 2043142
- PAR ID:
- 10492535
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- npj Climate and Atmospheric Science
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2397-3722
- Page Range / eLocation ID:
- 34
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In a recent study by Wang et al. that introduced a dynamical efficiency to the intensification potential of a tropical cyclone (TC) system, a simplified energetically based dynamical system (EBDS) model was shown to be able to capture the intensity dependence of TC potential intensification rate (PIR) in both idealized numerical simulations and observations. Although the EBDS model can capture the intensity dependence of TC intensification as in observations, a detailed evaluation has not yet been done. This study provides an evaluation of the EBDS model in reproducing the intensity-dependent feature of the observed TC PIR based on the best track data for TCs over the North Atlantic and central, eastern, and western North Pacific during 1982–2019. Results show that the theoretical PIR estimated by the EBDS model can capture basic features of the observed PIR reasonably well. The TC PIR in the best track data increases with increasing relative TC intensity [intensity normalized by its corresponding maximum potential intensity (MPI)] and reaches a maximum at an intermediate relative intensity around 0.6, and then decreases with increasing relative intensity to zero as the TC approaches its MPI, as in idealized numerical simulations. Results also show that the PIR for a given relative intensity increases with the increasing MPI and thus increasing sea surface temperature, which is also consistent with the theoretical PIR implied by the EBDS model. In addition, future directions to include environmental effects and make the EBDS model applicable to predict intensity change of real TCs are also discussed.more » « less
-
Increasing tropical cyclone (TC) pressure on temperate forests is inevitable under the recent global increase of the in- tensity and poleward migration of TCs. However, the long-term effects of TCs on large-scale structure and diversity of temperate forests remain unclear. Here, we aim to ascertain the legacy of TCs on forest structure and tree species rich- ness by using structural equation models that consider several environmental gradients and use an extensive dataset containing >140,000 plots with >3 million trees from natural temperate forests across eastern United States impacted by TCs. We found that high TC activity (a combination of TC frequency and intensity) leads to a decrease in maximum tree sizes (height and diameter), an increase in tree density and basal area, and a decline in the number of tree species and recruits. We identified TC activity as the strongest predictor of forest structure and species richness in xeric (dry) forests, while it had a weaker impact on hydric (wet) forests. We highlight the sensitivity of forest structure and tree species richness to impacts of likely further increase of TC activity in interaction with climate extremes, especially drought. Our results show that increased TC activity leads to the homogenization of forest structure and reduced tree species richness in U.S. temperate forests. These findings suggest that further declines in tree species richness may be expected because of the projected increase of future levels of TC activity.more » « less
-
Abstract In this study, the potential changes in tropical cyclone (TC) lifetime in the western North Pacific basin are examined for different future climates. Using homogeneous 9-km-resolution dynamical downscaling with the Weather Research and Forecasting (WRF) Model, we show that TC-averaged lifetime displays insignificant change under both low and high greenhouse gas concentration scenarios. However, more noticeable changes in the tails of TC lifetime statistics are captured in our downscaling simulations, with more frequent long-lived TCs (lifetime of 8–11 days) and less short-lived TCs (lifetime of 3–5 days). Unlike present-day simulations, it is found that the correlation between TC lifetime and the Niño index is relatively weak and insignificant in all future downscaling simulations, thus offering little explanation for these changes in TC lifetime statistics based on El Niño–Southern Oscillation. More detailed analyses of TC track distribution in the western North Pacific basin reveal, nevertheless, a noticeable shift of TC track patterns toward the end of the twenty-first century. Such a change in TC track climatology results in an overall longer duration of TCs over the open ocean, which is consistent across future scenarios and periods examined in this study. This shift in the TC track pattern is ultimately linked to changes in the western North Pacific subtropical high, which retreats to the south during July and to the east during August–September. The results obtained in this study provide new insights into how large-scale circulations can affect TC lifetime in the western North Pacific basin in warmer climates. Significance StatementUsing high-resolution dynamical downscaling with the Weather Research and Forecasting (WRF) Model under low- and high-emission scenarios, this study shows that the basin-averaged tropical cyclone (TC) lifetime in the western North Pacific (WNP) basin has no noticeable change under both warmer climate scenarios, despite an overall increase in TC maximum intensity. However, the tails of the TC lifetime distribution display significant changes, with more long-lived (6–20 days) TCs but less short-lived (3–5 days) TCs in the future. These changes in TC lifetime statistics are caused by the shift of the North Pacific subtropical high, which alters large-scale steering flows and TC track patterns. These results help explain why previous studies on TC lifetime projections have been inconclusive in the WNP basin and provide new insights into how large-scale circulations can modulate TC lifetime in a warmer climate.more » « less
-
Abstract This study uses a recently developed airborne Doppler radar database to explore how vortex misalignment is related to tropical cyclone (TC) precipitation structure and intensity change. It is found that for relatively weak TCs, defined here as storms with a peak 10-m wind of 65 kt (1 kt = 0.51 m s−1) or less, the magnitude of vortex tilt is closely linked to the rate of subsequent TC intensity change, especially over the next 12–36 h. In strong TCs, defined as storms with a peak 10-m wind greater than 65 kt, vortex tilt magnitude is only weakly correlated with TC intensity change. Based on these findings, this study focuses on how vortex tilt is related to TC precipitation structure and intensity change in weak TCs. To illustrate how the TC precipitation structure is related to the magnitude of vortex misalignment, weak TCs are divided into two groups: small-tilt and large-tilt TCs. In large-tilt TCs, storms display a relatively large radius of maximum wind, the precipitation structure is asymmetric, and convection occurs more frequently near the midtropospheric TC center than the lower-tropospheric TC center. Alternatively, small-tilt TCs exhibit a greater areal coverage of precipitation inward of a relatively small radius of maximum wind. Greater rates of TC intensification, including rapid intensification, are shown to occur preferentially for TCs with greater vertical alignment and storms in relatively favorable environments. Significance StatementAccurately predicting tropical cyclone (TC) intensity change is challenging. This is particularly true for storms that undergo rapid intensity changes. Recent numerical modeling studies have suggested that vortex vertical alignment commonly precedes the onset of rapid intensification; however, this consensus is not unanimous. Until now, there has not been a systematic observational analysis of the relationship between vortex misalignment and TC intensity change. This study addresses this gap using a recently developed airborne radar database. We show that the degree of vortex misalignment is a useful predictor for TC intensity change, but primarily for weak storms. In these cases, more aligned TCs exhibit precipitation patterns that favor greater intensification rates. Future work should explore the causes of changes in vortex alignment.more » « less
An official website of the United States government

