skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating Reduced-Order Urban Wind Models for Simulating Flight Dynamics of Advanced Aerial Mobility Aircraft
Advanced Aerial Mobility (AAM) platforms are poised to begin high-density operations in urban areas nationwide. This new category of aviation platforms spans a broad range of sizes, from small package delivery drones to passenger-carrying vehicles. Unlike traditional aircraft, AAM vehicles operate within the urban boundary layer, where large structures, such as buildings, interrupt the flow. This study examines the response of a package delivery drone, a general aviation aircraft, and a passenger-carrying urban air mobility aircraft through an urban wind field generated using Large Eddy Simulations (LES). Since it is burdensome to simulate flight dynamics in real-time using the full-order solution, reduced-order wind models are created. Comparing trajectories for each aircraft platform using full-order or reduced-order solutions reveals little difference; reduced-order wind representations appear sufficient to replicate trajectories as long as the spatiotemporal wind field is represented. However, examining control usage statistics and time histories creates a stark difference between the wind fields, especially for the lower wing-loading package delivery drone where control saturation was encountered. The control saturation occurrences were inconsistent across the full-order and reduced-order winds, advising caution when using reduced-order models for lightly wing-loaded aircraft. The results presented demonstrate the effectiveness of using a simulation environment to evaluate reduced-order models by directly comparing their trajectories and control activity metrics with the full-order model. This evaluation provides designers valuable insights for making informed decisions for disturbance rejection systems. Additionally, the results indicate that using Reynolds-averaged Navier–Stokes (RANS) solutions to represent urban wind fields is inappropriate. It was observed that the mean wind field trajectories fall outside the 95% confidence intervals, a finding consistent with the authors’ previous research.  more » « less
Award ID(s):
1925147
PAR ID:
10558907
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Aerospace
Volume:
11
Issue:
10
ISSN:
2226-4310
Page Range / eLocation ID:
830
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The concept of Advanced Air Mobility involves utilizing cutting-edge transportation platforms to transport passengers and cargo efficiently over short distances in urban and suburban areas. However, using simplified atmospheric models for aircraft simulations can prove insufficient for modeling large disturbances impacting low-altitude flight regimes. Due to the complexities of operating in urban environments, realistic wind modeling is necessary to ensure trajectory planning and control design can maintain high levels of safety. In this study, we simulate the dynamic response of a representative advanced air mobility platform operating in wing-borne flight through an urban wind field generated using Large Eddy Simulations (LES) and a wind field created using reduced-order models based on full-order computational solutions. Our findings show that the longitudinal response of the aircraft was not greatly affected by the fidelity of the LES models or if the spatial variation was considered while evaluating the full-order wind model. This is encouraging as it indicates that the full LES generation of the wind field may not be necessary, which decreases the complexity and time needed in this analysis. Differences are present when comparing the lateral response, owing to the differences in the asymmetric loading of the planform in the full and reduced order models. These differences seen in the lateral responses are expected to increase for planforms with smaller wing loadings, which could pose challenges. Additionally, the response of the aircraft to the mean wind field, the temporal average of the full order model, was misrepresentative in the longitudinal response and greatly under-predicted control surface activity, particularly in the lateral response. 
    more » « less
  2. This paper addresses the proposed air corridor planned to be established between the University of North Texas (UNT) and Choctaw Nation of Oklahoma (CNO), a model for accessible Advance Air Mobility (AAM) service. The National Aeronautics and Space Administration (NASA) defines AAM as “safe, sustainable, affordable, and accessible aviation for transformational local and intra-regional missions" [1] and AAM missions as rural and urban operations that occur below ranges of 300 nautical miles, including passenger carrying and cargo delivery technologies. 
    more » « less
  3. Advanced air mobility (AAM) is an emerging sector in aviation aiming to offer secure, efficient, and eco-friendly transportation utilizing electric vertical takeoff and landing (eVTOL) aircraft. These vehicles are designed for short-haul flights, transporting passengers and cargo between urban centers, suburbs, and remote areas. As the number of flights is expected to rise significantly in congested metropolitan areas, there is a need for a digital ecosystem to support the AAM platform. This ecosystem requires seamless integration of air traffic management systems, ground control systems, and communication networks, enabling effective communication between AAM vehicles and ground systems to ensure safe and efficient operations. Consequently, the aviation industry is seeking to develop a new aerospace framework that promotes shared aerospace practices, ensuring the safety, sustainability, and efficiency of air traffic operations. However, the lack of adequate wireless coverage in congested cities and disconnected rural communities poses challenges for large-scale AAM deployments. In the immediate recovery phase, incorporating AAM with new air-to-ground connectivity presents difficulties such as overwhelming the terrestrial network with data requests, maintaining link reliability, and managing handover occurrences. Furthermore, managing eVTOL traffic in urban areas with congested airspace necessitates high levels of connectivity to support air routing information for eVTOL vehicles. This paper introduces a novel concept addressing future flight challenges and proposes a framework for integrating operations, infrastructure, connectivity, and ecosystems in future air mobility. Specifically, it includes a performance analysis to illustrate the impact of extensive AAM vehicle mobility on ground base station network infrastructure in urban environments. This work aims to pave the way for future air mobility by introducing a new vision for backbone infrastructure that supports safe and sustainable aviation through advanced communication technology. 
    more » « less
  4. With the advancing development of Advanced Air Mobility (AAM), there is a collaborative effort to increase safety in the airspace. AAM is an advancing field of aviation that aims to contribute to the safe transportation of goods and people using aerial vehicles. When aerial vehicles are operating in high-density locations such as urban areas, it can become crucial to incorporate collision avoidance systems. Currently, there are available pilot advisory systems such as Traffic Collision and Avoidance Systems (TCAS) providing assistance to manned aircraft, although there are currently no collision avoidance systems for autonomous flights. Standards Organizations such as the Institute of Electrical and Electronics Engineers (IEEE), Radio Technical Commission for Aeronautics (RTCA), and General Aviation Manufacturers Association (GAMA) are working to develop cooperative autonomous flights using UAS-to-UAS Communication in structured and unstructured airspaces. This paper presents a new approach for collision avoidance strategies within structured airspace known as “digital traffic lights”. The digital traffic lights are deployed over an area of land, controlling all UAVs that enter a potential collision zone and providing specific directions to mitigate a collision in the airspace. This strategy is proven through the results demonstrated through simulation in a Cesium Environment. With the deployment of the system, collision avoidance can be achieved for autonomous flights in all airspaces. 
    more » « less
  5. Advanced Air Mobility (AAM) operations are expected to transform air transportation while challenging current air traffic management practices. By introducing a novel market-based mechanism, we address the problem of on-demand allocation of capacity-constrained airspace to AAM vehicles with heterogeneous and private valuations. We model airspace and air infrastructure as a collection of contiguous regions (or sectors) with constraints on the number of vehicles that simultaneously enter, stay, or exit each region. Vehicles request access to airspace with trajectories spanning multiple regions at different times. We use the graph structure of our airspace model to formulate the allocation problem as a path allocation problem on a time-extended graph. To ensure that the cost information of AAM vehicles remains private, we introduce a novel mechanism that allocates each vehicle a budget of “air-credits” (an artificial currency) and anonymously charges prices for traversing the edges of the time-extended graph. We seek to compute a competitive equilibrium that ensures that: (i) capacity constraints are satisfied, (ii) a strictly positive resource price implies that the sector capacity is fully utilized, and (iii) the allocation is integral and optimal for each AAM vehicle given current prices, without requiring access to individual vehicle utilities. However, a competitive equilibrium with integral allocations may not always exist. We provide sufficient conditions for the existence and computation of a fractional-competitive equilibrium, where allocations can be fractional. Building on these theoretical insights, we propose a distributed, iterative, two-step algorithm that: (1) computes a fractional competitive equilibrium, and (2) derives an integral allocation from this equilibrium. We validate the effectiveness of our approach in allocating trajectories for the emerging urban air mobility service of drone delivery. 
    more » « less