skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In-plane beam focusing via integrated photonic gradient-index subwavelength grating metalens
We present an in-plane beam converter scheme that can focus a large Gaussian slab mode into a tightly focused spot approximately hundreds of micrometers away from the chip facet. Our approach involves designing the modal expander that converts a photonic waveguide mode to a large Gaussian slab mode and engineering the two-dimensional (2D) gradient-index subwavelength grating arrays that modify modal wavefront to be focused as the beam propagates. The device is designed on a monolithic silicon nitride scheme, which is transparent at the visible wavelength regime and readily available for the complementary metal-oxide-semiconductor process. Our device can be utilized in various chip-scale photonic applications, especially involving biochemical species and target samples ranging from one to tens of micrometer scales.  more » « less
Award ID(s):
2144568
PAR ID:
10558923
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
32
Issue:
26
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 46225
Size(s):
Article No. 46225
Sponsoring Org:
National Science Foundation
More Like this
  1. Active mode mismatch sensing and control can facilitate optimal coupling in optical cavity experiments such as interferometric gravitational wave detectors. In this paper, we demonstrate a radio-frequency (RF) beam wavefront curvature modulation-based mode mismatch sensing scheme inspired by the previously proposed RF beam jitter alignment sensing scheme. The proposed mode mismatch sensing scheme uses an electro-optic lens (EOL) device that is designed to provide the required beam wavefront curvature actuation, as well as a mode converting telescope that rephases the RF second-order modes and generates a non-vanishing mode mismatch sensing signal. We carefully investigate the total second-order mode generation from the wavefront actuation both analytically and numerically, taking the effects of Gaussian beam size evolution and the second-order mode phase mismatch cancellation into consideration. We demonstrate the second-order mode generation as a function of the incident beam waist size and the electro-optic crystal size which, along with a “trade-off” consideration of the beam size at the edges of the crystal and the clipping loss, provides us with guidance for designing the beam profile that interacts with the crystal to improve the EOL modulation efficiency. 
    more » « less
  2. Abstract Beam-splitter operations are an indispensable resource for processing quantum information encoded in bosonic modes. In hybrid quantum systems, however, it can be challenging to implement reliable beam-splitters between two distinct modes due to various experimental imperfections. Without beam-splitters, realizing arbitrary Gaussian operations between bosonic modes can become highly non-trivial or even infeasible. In this work, we develop interference-based protocols for engineering Gaussian operations in multi-mode hybrid bosonic systems without requiring beam-splitters. Specifically, for a given generic multi-mode Gaussian unitary coupler, we demonstrate a universal scheme for constructing Gaussian operations on a desired subset of the modes, requiring only multiple uses of the given coupler interleaved with single-mode Gaussian unitaries. Our results provide efficient construction of operations crucial to quantum information science, and are derived from fundamental physical properties of bosonic systems. The proposed scheme is thus widely applicable to existing platforms and couplers, with the exception of certain edge cases. We introduce a systematic approach to identify and treat these edge cases by utilizing an intrinsically invariant structure associated with our interference-based construction. 
    more » « less
  3. The exploitation of Brillouin scattering, the scattering of light by sound, has led to demonstrations of a broad spectrum of novel physical phenomena and device functionalities for practical applications. Compared with optomechanical excitation by optical forces, electromechanical excitation of acoustic waves with transducers on a piezoelectric material features intense acoustic waves sufficient to achieve near-unity scattering efficiency within a compact device footprint, which is essential for practical applications. Recently, it has been demonstrated that gigahertz acoustic waves can be electromechanically excited to scatter guided optical waves in integrated photonic waveguides and cavities, leading to intriguing phenomena such as induced transparency and nonreciprocal mode conversion, and advanced optical functionalities. The new integrated electromechanical Brillouin devices, utilizing state-of-the-art nanofabrication capabilities and piezoelectric thin film materials, succeed guided wave acousto-optics with unprecedented device integration, ultrahigh frequency, and strong light-sound interaction. Here, we experimentally demonstrate large-angle (60°) acousto-optic beam deflection of guided telecom-band light in a planar photonics device with electromechanically excited gigahertz (∼11 GHz) acoustic Lamb waves. The device consists of integrated transducers, waveguides, and lenses, all fabricated on a 330 nm thick suspended aluminum nitride membrane. In contrast, conventional guided-wave acousto-optic devices can only achieve a deflection angle of a few degrees at most. Our work shows the promises of such a new acousto-optic device platform, which may lead to potential applications in on-chip beam steering and routing, optical spectrum analysis, high-frequency acousto-optic modulators, RF or microwave filters and delay lines, as well as nonreciprocal optical devices such as optical isolators. 
    more » « less
  4. Abstract Silicon photonic index sensors have received significant attention for label-free bio and gas-sensing applications, offering cost-effective and scalable solutions. Here, we introduce an ultra-compact silicon photonic refractive index sensor that leverages zero-crosstalk singularity responses enabled by subwavelength gratings. The subwavelength gratings are precisely engineered to achieve an anisotropic perturbation-led zero-crosstalk, resulting in a single transmission dip singularity in the spectrum that is independent of device length. The sensor is optimized for the transverse magnetic mode operation, where the subwavelength gratings are arranged perpendicular to the propagation direction to support a leaky-like mode and maximize the evanescent field interaction with the analyte space. Experimental results demonstrate a high wavelength sensitivity of − 410 nm/RIU and an intensity sensitivity of 395 dB/RIU, with a compact device footprint of approximately 82.8 μm2. Distinct from other resonant and interferometric sensors, our approach provides an FSR-free single-dip spectral response on a small device footprint, overcoming common challenges faced by traditional sensors, such as signal/phase ambiguity, sensitivity fading, limited detection range, and the necessity for large device footprints. This makes our sensor ideal for simplified intensity interrogation. The proposed sensor holds promise for a range of on-chip refractive index sensing applications, from gas to biochemical detection, representing a significant step towards efficient and miniaturized photonic sensing solutions. Graphical Abstract 
    more » « less
  5. The recent development of 8-in Gallium Nitride on Silicon (GaN-on-Si) wafers has facilitated cost effective, large-scale manufacturability of GaN-based electronics. Leveraging its wide band gap, capability to support a two dimensional electron gas (2DEG) layer, and strong built-in polarization effects, GaN-based electronic devices have become a viable cost-effective successor to silicon-based devices for high-performance applications where the large bandgap and high breakdown field are required. The advantageous properties of GaN-on-Si material, however, have yet to be utilized for photonic integrated circuit applications. Therefore, the exploration of GaN for efficient on-chip optical modulation and switching applications is examined. In order to effectively characterize GaN’s capabilities for optical modulation and switching, GaN-based Mach-Zehnder modulators are designed and fabricated. Through simulating the propagating optical modes supported in a GaN-based Mach-Zehnder structure, the geometry of the device is designed to optimize optical modal overlap with the 2DEG layer while maintaining single-mode performance. Through electrical and optical characterization, the effective electro-optic coefficient and Vπ length are measured. These measurements provide a method of benchmarking GaN-based photonic devices for their optical modulation and switching efficiency. 
    more » « less