skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Universal interference-based construction of Gaussian operations in hybrid quantum systems
Abstract Beam-splitter operations are an indispensable resource for processing quantum information encoded in bosonic modes. In hybrid quantum systems, however, it can be challenging to implement reliable beam-splitters between two distinct modes due to various experimental imperfections. Without beam-splitters, realizing arbitrary Gaussian operations between bosonic modes can become highly non-trivial or even infeasible. In this work, we develop interference-based protocols for engineering Gaussian operations in multi-mode hybrid bosonic systems without requiring beam-splitters. Specifically, for a given generic multi-mode Gaussian unitary coupler, we demonstrate a universal scheme for constructing Gaussian operations on a desired subset of the modes, requiring only multiple uses of the given coupler interleaved with single-mode Gaussian unitaries. Our results provide efficient construction of operations crucial to quantum information science, and are derived from fundamental physical properties of bosonic systems. The proposed scheme is thus widely applicable to existing platforms and couplers, with the exception of certain edge cases. We introduce a systematic approach to identify and treat these edge cases by utilizing an intrinsically invariant structure associated with our interference-based construction.  more » « less
Award ID(s):
1640959 1936118
PAR ID:
10368018
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Quantum Information
Volume:
8
Issue:
1
ISSN:
2056-6387
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fault-tolerant quantum computation with bosonic qubits often necessitates the use of noisy discrete-variable ancillae. In this work, we establish a comprehensive and practical fault-tolerance framework for such a hybrid system and synthesize it with fault-tolerant protocols by combining bosonic quantum error correction (QEC) and advanced quantum control techniques. We introduce essential building blocks of error-corrected gadgets by leveraging ancilla-assisted bosonic operations using a generalized variant of path-independent quantum control. Using these building blocks, we construct a universal set of error-corrected gadgets that tolerate a single-photon loss and an arbitrary ancilla fault for four-legged cat qubits. Notably, our construction requires only dispersive coupling between bosonic modes and ancillae, as well as beam-splitter coupling between bosonic modes, both of which have been experimentally demonstrated with strong strengths and high accuracy. Moreover, each error-corrected bosonic qubit is comprised of only a single bosonic mode and a three-level ancilla, featuring the hardware efficiency of bosonic QEC in the full fault-tolerant setting. We numerically demonstrate the feasibility of our schemes using current experimental parameters in the circuit-QED platform. Finally, we present a hardware-efficient architecture for fault-tolerant quantum computing by concatenating the four-legged cat qubits with an outer qubit code utilizing only beam-splitter couplings. Our estimates suggest that the overall noise threshold can be reached using existing hardware. These developed fault-tolerant schemes extend beyond their applicability to four-legged cat qubits and can be adapted for other rotation-symmetrical codes, offering a promising avenue toward scalable and robust quantum computation with bosonic qubits. 
    more » « less
  2. Abstract Triangular cross-section color center photonics in silicon carbide is a leading candidate for scalable implementation of quantum hardware. Within this geometry, we model low-loss beam splitters for applications in key quantum optical operations such as entanglement and single-photon interferometry. We consider triangular cross-section single-mode waveguides for the design of a directional coupler. We optimize parameters for a 50:50 beam splitter. Finally, we test the experimental feasibility of the designs by fabricating triangular waveguides in an ion beam etching process and identify suitable designs for short-term implementation. 
    more » « less
  3. We propose an autonomous quantum error correction scheme using squeezed cat (SC) code against excitation loss in continuous-variable systems. Through reservoir engineering, we show that a structured dissipation can stabilize a two-component SC while autonomously correcting the errors. The implementation of such dissipation only requires low-order nonlinear couplings among three bosonic modes or between a bosonic mode and a qutrit. While our proposed scheme is device independent, it is readily implementable with current experimental platforms such as superconducting circuits and trapped-ion systems. Compared to the stabilized cat, the stabilized SC has a much lower dominant error rate and a significantly enhanced noise bias. Furthermore, the bias-preserving operations for the SC have much lower error rates. In combination, the stabilized SC leads to substantially better logical performance when concatenating with an outer discrete-variable code. The surface-SC scheme achieves more than one order of magnitude increase in the threshold ratio between the loss rate κ1 and the engineered dissipation rate κ2. Under a practical noise ratio κ1/κ2 = 10−3, the repetition-SC scheme can reach a 10−15 logical error rate even with a small mean excitation number of 4, which already suffices for practically useful quantum algorithms. 
    more » « less
  4. Recent advancements in multi-mode Gottesman-Kitaev-Preskill (GKP) codes have shown great promise in enhancing the protection of both discrete and analog quantum information. This broadened range of protection brings opportunities beyond quantum computing to benefit quantum sensing by safeguarding squeezing — the essential resource in many quantum metrology protocols. However, the potential for quantum sensing to benefit quantum error correction has been less explored. In this work, we provide a unique example where techniques from quantum sensing can be applied to improve multi-mode GKP codes. Inspired by distributed quantum sensing, we propose the distributed two-mode squeezing (dtms) GKP codes that offer benefits in error correction with minimal active encoding operations. Indeed, the proposed codes rely on a s i n g l e (active) two-mode squeezing element and an array of beamsplitters that effectively distributes continuous-variable correlations to many GKP ancillae, similar to continuous-variable distributed quantum sensing. Despite this simple construction, the code distance achievable with dtms-GKP qubit codes is comparable to previous results obtained through brute-force numerical search \cite{lin2023closest}. Moreover, these codes enable analog noise suppression beyond that of the best-known two-mode codes \cite{noh2020o2o} without requiring an additional squeezer. We also provide a simple two-stage decoder for the proposed codes, which appears near-optimal for the case of two modes and permits analytical evaluation. 
    more » « less
  5. We propose a method to build an astronomical interferometer using continuous-variable quantum teleportation to overcome transmission loss between distant telescopes. The scheme relies on two-mode squeezed states shared by distant telescopes as entanglement resources, which are distributed using continuous-variable quantum repeaters. We find the optimal measurement on the teleported states, which uses beam splitters and photon-number-resolved detection. Compared to prior proposals relying on discrete states, our scheme has the advantages of using linear optics to implement it without wasting stellar photons, and making use of multiphoton events, which are regarded as noise in previous discrete schemes. We also outline the parameter regimes in which our scheme outperforms the direct detection method, schemes utilizing distributed discrete-variable entangled states, and local heterodyne techniques. 
    more » « less