Abstract The spectra of coronal mass ejections (CMEs) in the low corona play a crucial role in understanding their origins and physical mechanisms and enhancing space weather forecasting. However, capturing these spectra faces significant challenges. This paper introduces a scheme of a multislit spectrometer design with five slits, acquiring the global spectra of the solar corona simultaneously with a focus on the spectra of CMEs in the low corona. The chosen wavelength range of the spectrometer (170–180 Å) includes four extreme ultraviolet emission lines (Fex174.53 Å, Feix171.07 Å, Fex175.26 Å, Fex177.24 Å), which provides information on the plasma velocity, density, and temperature. Utilizing a numerical simulation of the global corona for both the on-disk and the off-limb scenarios, we focus on resolving the ambiguity associated with various Doppler velocity components of CMEs, particularly for a fast CME in the low corona. A new application of our decomposition technique is adopted, enabling the successful identification of multiple discrete CME velocity components. Our findings demonstrate a strong correlation between the synthetic model spectra and the inverted results, indicating the robustness of our decomposition method and its significant potential for global monitoring of the solar corona, including CMEs. 
                        more » 
                        « less   
                    
                            
                            Global Coronal Plasma Diagnostics Based on Multislit Extreme-ultraviolet Spectroscopy
                        
                    
    
            Abstract Full-disk spectroscopic observations of the solar corona are highly desired to forecast solar eruptions and their impact on planets and to uncover the origin of solar wind. In this paper, we introduce a new multislit design (five slits) to obtain extreme-ultraviolet (EUV) spectra simultaneously. The selected spectrometer wavelength range (184–197 Å) contains several bright EUV lines that can be used for spectral diagnostics. The multislit approach offers an unprecedented way to efficiently obtain the global spectral data but the ambiguity from different slits should be resolved. Using a numerical simulation of the global corona, we primarily concentrate on the optimization of the disambiguation process, with the objective of extracting decomposed spectral information of six primary lines. This subsequently facilitates a comprehensive series of plasma diagnostics, including density (Fexii195.12/186.89 Å), Doppler velocity (Fexii193.51 Å), line width (Fexii193.51 Å), and temperature diagnostics (Feviii185.21 Å, Fex184.54 Å, Fexi188.22 Å, and Fexii193.51 Å). We find a good agreement between the forward modeling parameters and the inverted results at the initial eruption stage of a coronal mass ejection, indicating the robustness of the decomposition method and its immense potential for global monitoring of the solar corona. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10558979
- Publisher / Repository:
- American Astronomical Society
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 967
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 162
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Despite their somewhat frequent appearance in extreme-ultraviolet (EUV) imaging of off-limb flares, the origins of supra-arcade downflows (SADs) remain a mystery. Appearing as dark, tendril-like downflows above growing flare loop arcades, SADs themselves are yet to be tied into the standard model of solar flares. The uncertainty of their origin is, in part, due to a lack of spectral observations, with the last published SAD spectral observations dating back to the Solar and Heliospheric Observatory/Solar Ultraviolet Measurements of Emitted Radiation era in 2003. In this work, we present new observations of SADs within an M-class solar flare on 2022 April 2, observed by the Hinode EUV Imaging Spectrometer (EIS) and the NASA Solar Dynamics Observatory. We measure FeXXIV192.02 Å Doppler downflows and nonthermal velocities in the low-intensity SAD features, exceeding values measured in the surrounding flare fan. The ratio of temperature-sensitive FeXXIV255.11 Å and FeXXIII263.41 Å lines also allows the measurement of electron temperature, revealing temperatures within the range of the surrounding flare fan. We compare EIS line-of-sight Doppler velocities with plane-of-sky velocities measured by Atmospheric Imaging Assembly, to construct the 3D velocity profile of four prominent SADs, finding evidence for their divergence above the flare loop arcade—possibly related to the presence of a high-altitude termination shock. Finally, we detect “stealth” SADs, which produce SAD-like Doppler signals, yet with no change in intensity.more » « less
- 
            Abstract We present the spatially resolved absolute brightness of the Fex, Fexi, and Fexivvisible coronal emission lines from 1.08 to 3.4R⊙, observed during the 2019 July 2 total solar eclipse (TSE). The morphology of the corona was typical of solar minimum, with a dipole field dominance showcased by large polar coronal holes and a broad equatorial streamer belt. The Fexiline is found to be the brightest, followed by Fexand Fexiv(in diskB⊙units). All lines had brightness variations between streamers and coronal holes, where Fexivexhibited the largest variation. However, Fexremained surprisingly uniform with latitude. The Fe line brightnesses are used to infer the relative ionic abundances and line-of-sight-averaged electron temperature (Te) throughout the corona, yielding values from 1.25 to 1.4 MK in coronal holes and up to 1.65 MK in the core of streamers. The line brightnesses and inferredTevalues are then quantitatively compared to the Predictive Science Inc. magnetohydrodynamic model prediction for this TSE. The MHD model predicted the Fe lines rather well in general, while the forward-modeled line ratios slightly underestimated the observationally inferredTewithin 5%–10% averaged over the entire corona. Larger discrepancies in the polar coronal holes may point to insufficient heating and/or other limitations in the approach. These comparisons highlight the importance of TSE observations for constraining models of the corona and solar wind formation.more » « less
- 
            Abstract In this paper, we report the observed temporal correlation between extreme-ultraviolet (EUV) emission and magneto-acoustic oscillations in an EUV moss region, which is the footpoint region only connected by magnetic loops with million-degree plasma. The result is obtained from a detailed multi-wavelength data analysis of the region with the purpose of resolving fine-scale mass and energy flows that come from the photosphere, pass through the chromosphere and finally heat the solar transition region or the corona. The data set covers three atmospheric levels on the Sun, consisting of high-resolution broad-band imaging at TiO 7057 Å and the line of sight magnetograms for the photosphere, high-resolution narrow-band images at helium i 10830 Å for the chromosphere and EUV images at 171 Å for the corona. The 10830 Å narrow-band images and the TiO 7057 Å broad-band images are from a much earlier observation on 2012 July 22 with the 1.6 meter aperture Goode Solar Telescope (GST) at Big Bear Solar Observatory (BBSO) and the EUV 171 Å images and the magnetograms are from observations made by Atmospheric Imaging Assembly (AIA) or Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We report the following new phenomena: (1) Repeated injections of chromospheric material appearing as 10830 Å absorption are squirted out from inter-granular lanes with a period of ∼ 5 minutes. (2) EUV emissions are found to be periodically modulated with similar periods of ∼ 5 minutes. (3) Around the injection area where 10830 Å absorption is enhanced, both EUV emissions and strength of the magnetic field are remarkably stronger. (4) The peaks on the time profile of the EUV emissions are found to be in sync with oscillatory peaks of the stronger magnetic field in the region. These findings may give a series of strong evidences supporting the scenario that coronal heating is powered by magneto-acoustic waves.more » « less
- 
            Abstract Differential emission measure (DEM) inversion methods use the brightness of a set of emission lines to infer the line-of-sight (LOS) distribution of the electron temperature (Te) in the corona. DEM inversions have been traditionally performed with collisionally excited lines at wavelengths in the extreme ultraviolet and X-ray. However, such emission is difficult to observe beyond the inner corona (1.5R⊙), particularly in coronal holes. Given the importance of theTedistribution in the corona for exploring the viability of different heating processes, we introduce an analog of the DEM specifically for radiatively excited coronal emission lines, such as those observed during total solar eclipses (TSEs) and with coronagraphs. This radiative-DEM (R-DEM) inversion utilizes visible and infrared emission lines that are excited by photospheric radiation out to at least 3R⊙. Specifically, we use the Fex(637 nm), Fexi(789 nm), and Fexiv(530 nm) coronal emission lines observed during the 2019 July 2 TSE near solar minimum. We find that, despite a largeTespread in the inner corona, the distribution converges to an almost isothermal yet bimodal distribution beyond 1.4R⊙, withTeranging from 1.1 to 1.4 in coronal holes and from 1.4 to 1.65 MK in quiescent streamers. Application of the R-DEM inversion to the Predictive Science Inc. magnetohydrodynamic simulation for the 2019 eclipse validates the R-DEM method and yields a similar LOSTedistribution to the eclipse data.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    